Shifts and signs: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Alec (talk | contribs)
New page: The first 1124 sequence seems to exhibit great structure in its subsequences of the form <math>x_{p^k m}</math>. If <math>m \nmid p</math>, we can often (subject to some anomalies) write ...
 
Alec (talk | contribs)
No edit summary
Line 15: Line 15:
5 2 -1 2 -1 0 -1
5 2 -1 2 -1 0 -1
6 1 -1 0 -1
6 1 -1 0 -1
7 3 -1 ? ? 0 -1
7 3 -1 0 -1 0 -1
8 3 -1 3 -1 0 -1
8 3 -1 3 -1 0 -1
9 2 +1 1 -1 0 +1
9 2 +1 1 -1 0 +1

Revision as of 14:30, 16 January 2010

The first 1124 sequence seems to exhibit great structure in its subsequences of the form [math]\displaystyle{ x_{p^k m} }[/math]. If [math]\displaystyle{ m \nmid p }[/math], we can often (subject to some anomalies) write

[math]\displaystyle{ x_{p^k m} = \eta(p,m) x_{p^{k+s(p,m)}} }[/math]

where [math]\displaystyle{ \eta(p,m) = \pm 1 }[/math] and [math]\displaystyle{ s(p,m) \geq 0 }[/math].

This table shows the first few values of [math]\displaystyle{ \eta(p,m) }[/math] and [math]\displaystyle{ s(p,m) }[/math]:

m 	s(2,m)	e(2,m)	s(3,m)	e(3,m)	s(5,m)	e(5,m)	s(7,m)	e(7,m)
1	0	+1	0	+1	0	+1	0	+1
2			1	-1	2	+1	1	+1
3	1	-1			2	-1	1	-1
4			2	+1	1	-1	0	+1
5	2	-1	2	-1			0	-1
6					1	-1	0	-1
7	3	-1	0	-1	0	-1
8			3	-1	3	-1	0	-1
9	2	+1			1	-1	0	+1
10			3	+1
11	3	+1	3	-1
12
13	3	-1	3	+1
14			4	-1
15	3	+1
16			4	+1
17	4	-1	4	-1
18
19	3	-1
20
21	4	+1
22
23	3	+1
24	
25	4	-1
26
27	3	-1
28
29	5	+1
30
31	5	-1
32
33	4	+1
34
35	5	+1
36
37	4	+1
38
39	4	+1
40
41	5	+1