Wirsing translation: Difference between revisions
No edit summary |
No edit summary |
||
Line 8: | Line 8: | ||
---- | ---- | ||
In I we have the asymptotic behavior of the sum <math> \sum_ | In I we have the asymptotic behavior of the sum <math> \sum_{n \leq x} \lambda (n)</math> for nonnegative | ||
multiplicative functions <math> \lambda</math> essentially under the condition | multiplicative functions <math> \lambda</math> essentially under the condition | ||
<math> (1.1) \sum_{p\leq x}\lambda(p)\log(p)\ | <math> (1.1) \sum_{p\leq x}\lambda(p)\log(p)\sim\tau x \mbox{ (p prime)}</math> | ||
: Determine | : Determine | ||
<math> (1.2) \sum_{n\leq x}\lambda(n)\ | <math> (1.2) \sum_{n\leq x}\lambda(n)\sim\frac{e^{-ct}}{\Gamma(\tau)}\frac{x}{\log x}\prod_{p\leq x}\left(1+\frac{\lambda(p)}{p}+\frac{\lambda(p^{2})}{p^{2}}+\cdots\right)</math> | ||
(<math> c</math> is the Euler-) constant. Special rates are the same type Delange [3]. The same result | (<math> c</math> is the Euler-) constant. Special rates are the same type Delange [3]. The same result (1.2) is here under the much weaker assumption | ||
<math> (1.3) \sum_{p\leq x}\lambda(p)\frac{\log p}{p}\ | <math> (1.3) \sum_{p\leq x}\lambda(p)\frac{\log p}{p}\sim\tau\log x</math> | ||
However, with the additional. Call <math> \lambda(p)= O(1)</math> and only for <math>\tau>0</math> are shown (Theorem 1.1). | However, with the additional. Call <math> \lambda(p)= O(1)</math> and only for <math>\tau>0</math> are shown (Theorem 1.1). | ||
The terms of <math> \lambda(p^{v}) (v\geq2)</math> are thieves than I, but we want them in the introduction | The terms of <math> \lambda(p^{v}) (v\geq2)</math> are thieves than I, but we want them in the introduction | ||
. neglect The same result for complex-function | . neglect The same result for complex-function <math> \lambda</math>, we get only if <math> \lambda</math> | ||
by <math> |\lambda|</math> nich significantly different, namely, if | by <math> |\lambda|</math> nich significantly different, namely, if | ||
... | ... |
Revision as of 09:51, 2 February 2010
E. Wirsing, "Das asymptotische verhalten von summen über multiplikative funktionen. II." Acta Mathematica Academiae Scientiarum Hungaricae Tomus 18 (3-4), 1978, pp. 411-467.
English Translation by: Google Translator
In I we have the asymptotic behavior of the sum [math]\displaystyle{ \sum_{n \leq x} \lambda (n) }[/math] for nonnegative multiplicative functions [math]\displaystyle{ \lambda }[/math] essentially under the condition
[math]\displaystyle{ (1.1) \sum_{p\leq x}\lambda(p)\log(p)\sim\tau x \mbox{ (p prime)} }[/math]
- Determine
[math]\displaystyle{ (1.2) \sum_{n\leq x}\lambda(n)\sim\frac{e^{-ct}}{\Gamma(\tau)}\frac{x}{\log x}\prod_{p\leq x}\left(1+\frac{\lambda(p)}{p}+\frac{\lambda(p^{2})}{p^{2}}+\cdots\right) }[/math]
([math]\displaystyle{ c }[/math] is the Euler-) constant. Special rates are the same type Delange [3]. The same result (1.2) is here under the much weaker assumption
[math]\displaystyle{ (1.3) \sum_{p\leq x}\lambda(p)\frac{\log p}{p}\sim\tau\log x }[/math]
However, with the additional. Call [math]\displaystyle{ \lambda(p)= O(1) }[/math] and only for [math]\displaystyle{ \tau\gt 0 }[/math] are shown (Theorem 1.1). The terms of [math]\displaystyle{ \lambda(p^{v}) (v\geq2) }[/math] are thieves than I, but we want them in the introduction . neglect The same result for complex-function [math]\displaystyle{ \lambda }[/math], we get only if [math]\displaystyle{ \lambda }[/math] by [math]\displaystyle{ |\lambda| }[/math] nich significantly different, namely, if
...