Basic facts about Bohr sets: Difference between revisions
New page: ==Definition== ===Version for cyclic groups=== Let <math>r_1,\dots,r_k</math> be elements of <math>\mathbb{Z}_N</math> and let δ>0. The <em>Bohr set</em> <math>B(r_1,\dots,r_k;\... |
|||
Line 10: | Line 10: | ||
Note that this definition does not quite coincide with the definition given above in the case <math>G=\mathbb{Z}_N</math>. In practice, the difference is not very important, and sometimes when working with <math>\mathbb{Z}_N</math> it is in any case more convenient to replace the condition given by the inequality <math>|1-\exp(2\pi i r_jx/N)|\leq\delta</math> for each j. | Note that this definition does not quite coincide with the definition given above in the case <math>G=\mathbb{Z}_N</math>. In practice, the difference is not very important, and sometimes when working with <math>\mathbb{Z}_N</math> it is in any case more convenient to replace the condition given by the inequality <math>|1-\exp(2\pi i r_jx/N)|\leq\delta</math> for each j. | ||
===Version for sets of integers=== |
Revision as of 11:27, 5 February 2011
Definition
Version for cyclic groups
Let [math]\displaystyle{ r_1,\dots,r_k }[/math] be elements of [math]\displaystyle{ \mathbb{Z}_N }[/math] and let δ>0. The Bohr set [math]\displaystyle{ B(r_1,\dots,r_k;\delta) }[/math] is the set of all [math]\displaystyle{ x\in\mathbb{Z}_N }[/math] such that [math]\displaystyle{ r_ix }[/math] lies in the interval [math]\displaystyle{ [-\delta N,\delta N] }[/math] for every i=1,2,...,k.
Version for more general finite Abelian groups
Let G be a finite Abelian group, let [math]\displaystyle{ \chi_1,\dots,\chi_k }[/math] be characters on G and let δ>0. The Bohr set [math]\displaystyle{ B(\chi_1,\dots,\chi_k;\delta) }[/math] is the set of all [math]\displaystyle{ g\in G }[/math] such that [math]\displaystyle{ |1-\chi_i(g)|\leq\delta }[/math] for every i=1,2,...,k.
Note that this definition does not quite coincide with the definition given above in the case [math]\displaystyle{ G=\mathbb{Z}_N }[/math]. In practice, the difference is not very important, and sometimes when working with [math]\displaystyle{ \mathbb{Z}_N }[/math] it is in any case more convenient to replace the condition given by the inequality [math]\displaystyle{ |1-\exp(2\pi i r_jx/N)|\leq\delta }[/math] for each j.