Kakeya problem: Difference between revisions
No edit summary |
No edit summary |
||
Line 17: | Line 17: | ||
From a paper of [http://arxiv.org/abs/0901.2529 Dvir, Kopparty, Saraf, and Sudan] it follows that <math>k_n \geq 3^n / 2^n</math>, but this is superseded by the estimates given below. | From a paper of [http://arxiv.org/abs/0901.2529 Dvir, Kopparty, Saraf, and Sudan] it follows that <math>k_n \geq 3^n / 2^n</math>, but this is superseded by the estimates given below. | ||
To each of the <math>(3^n-1)/2</math> directions in <math>{\mathbb F}_3^n</math> there correspond at least three pairs of elements in a Kakeya set, etermining this direction. Therefore, <math>\binom{k_n}2\ge 3(3^n-1)/2<math>, and hence | To each of the <math>(3^n-1)/2</math> directions in <math>{\mathbb F}_3^n</math> there correspond at least three pairs of elements in a Kakeya set, etermining this direction. Therefore, <math>\binom{k_n}{2}\ge 3\cdot(3^n-1)/2</math>, and hence | ||
:<math>k_n\ | :<math>k_n\gtrsim 3^{(n+1)/2}.</math> | ||
One can get essentially the same conclusion using the "bush" argument. There are <math>N := (3^n-1)/2</math> different directions. Take a line in every direction, let E be the union of these lines, and let <math>\mu</math> be the maximum multiplicity of these lines (i.e. the largest number of lines that are concurrent at a point). On the one hand, from double counting we see that E has cardinality at least <math>3N/\mu</math>. On the other hand, by considering the "bush" of lines emanating from a point with multiplicity <math>\mu</math>, we see that E has cardinality at least <math>2\mu+1</math>. If we minimise <math>\max(3N/\mu, 2\mu+1)</math> over all possible values of <math>\mu</math> one obtains approximately <math>\sqrt{6N} \approx 3^{(n+1)/2}</math> as a lower bound of |E| | One can get essentially the same conclusion using the "bush" argument. There are <math>N := (3^n-1)/2</math> different directions. Take a line in every direction, let E be the union of these lines, and let <math>\mu</math> be the maximum multiplicity of these lines (i.e. the largest number of lines that are concurrent at a point). On the one hand, from double counting we see that E has cardinality at least <math>3N/\mu</math>. On the other hand, by considering the "bush" of lines emanating from a point with multiplicity <math>\mu</math>, we see that E has cardinality at least <math>2\mu+1</math>. If we minimise <math>\max(3N/\mu, 2\mu+1)</math> over all possible values of <math>\mu</math> one obtains approximately <math>\sqrt{6N} \approx 3^{(n+1)/2}</math> as a lower bound of <math>|E|</math>. | ||
A better bound follows by using the "slices argument". Let <math>A,B,C\subset{\mathbb F}_3^{n-1}</math> be the three slices of a Kakeya set <math>E</math>. Form a graph <math>G</math> between <math>A</math> and <math>B</math> by connecting <math>a</math> and <math>b</math> by an edge if there is a line in <math>E</math> joining <math>a</math> and <math>b</math>. The restricted sumset <math>\{a+b\colon (a,b)\in G\}</math> is contained in the set <math>-C</math>, while the difference set <math>\{a-b\colon (a-b)\in G\}</math> is all of <math>{\mathbb F}_3^{n-1}</math>. Using an estimate from [http://front.math.ucdavis.edu/math.CO/9906097 a paper of Katz-Tao], we conclude that <math>3^{n-1}\le\max(|A|,|B|,|C|)^{11/6}</math>, leading to <math>|E|\ge 3^{6(n-1)/11}</math>. | |||
== General upper bounds == | == General upper bounds == | ||
Line 33: | Line 33: | ||
since the set of all vectors in <math>{\mathbb F}_3^n</math> such that at least one of the numbers <math>1</math> and <math>2</math> is missing among their coordinates is a Kakeya set. | since the set of all vectors in <math>{\mathbb F}_3^n</math> such that at least one of the numbers <math>1</math> and <math>2</math> is missing among their coordinates is a Kakeya set. | ||
''' | Another construction uses the "slices" idea and a construction of Imre Ruzsa. Let <math>A, B \subset [3]^n</math> be the set of strings with <math>n/3+O(\sqrt{n})</math> 1's, <math>2n/3+O(\sqrt{n})</math> 0's, and no 2's; let <math>C \subset [3]^n</math> be the set of strings with <math>2n/3+O(\sqrt{n})</math> 2's, <math>n/3+O(\sqrt{n})</math> 0's, and no 1's, and let <math>E = \{0\} \times A \cup \{1\} \times B \cup \{2\} \times C</math>. From [[Stirling's formula]] we have <math>|E| = (27/4 + o(1))^{n/3}</math>. Now I claim that for most <math>t \in [3]^{n-1}</math>, there exists an algebraic line in the direction (1,t). Indeed, typically t will have <math>n/3+O(\sqrt{n})</math> 0s, <math>n/3+O(\sqrt{n})</math> 1s, and <math>n/3+O(\sqrt{n})</math> 2s, thus <math>t = e + 2f</math> where e and f are strings with <math>n/3 + O(\sqrt{n})</math> 1s and no 2s, with the 1-sets of e and f being disjoint. One then checks that the line <math>(0,f), (1,e), (2,2e+2f)</math> lies in E. | ||
This is already a positive fraction of directions in <math>E</math>. One can use the random rotations trick to get the rest of the directions in <math>E</math> (losing a polynomial factor in <math>n</math>). | |||
Putting all this together, we seem to have | |||
:<math>(3^{6/11} + o(1))^n \le k_n \le ( (27/4)^{1/3} + o(1))^n</math> | |||
:<math>(3^{6/11} + o(1))^n \ | |||
or | or | ||
:<math>(1.8207\ldots+o(1))^n \ | :<math>(1.8207\ldots+o(1))^n \le k_n \le (1.88988+o(1))^n.</math> |
Revision as of 11:07, 18 March 2009
Define a Kakeya set to be a subset [math]\displaystyle{ A }[/math] of [math]\displaystyle{ [3]^n\equiv{\mathbb F}_3^n }[/math] that contains an algebraic line in every direction; that is, for every [math]\displaystyle{ d\in{\mathbb F}_3^n }[/math], there exists [math]\displaystyle{ a\in{\mathbb F}_3^n }[/math] such that [math]\displaystyle{ a,a+d,a+2d }[/math] all lie in [math]\displaystyle{ A }[/math]. Let [math]\displaystyle{ k_n }[/math] be the smallest size of a Kakeya set in [math]\displaystyle{ {\mathbb F}_3^n }[/math].
Clearly, we have [math]\displaystyle{ k_1=3 }[/math], and it is easy to see that [math]\displaystyle{ k_2=7 }[/math]. Using a computer, it is not difficult to find that [math]\displaystyle{ k_3=13 }[/math] and [math]\displaystyle{ k_4\le 27 }[/math]. Indeed, it seems likely that [math]\displaystyle{ k_4=27 }[/math] holds, meaning that in [math]\displaystyle{ {\mathbb F}_3^4 }[/math] one cannot get away with just [math]\displaystyle{ 26 }[/math] elements.
General lower bounds
Trivially,
- [math]\displaystyle{ k_n\le k_{n+1}\le 3k_n }[/math].
Since the Cartesian product of two Kakeya sets is another Kakeya set, we have
- [math]\displaystyle{ k_{n+m} \leq k_m k_n }[/math];
this implies that [math]\displaystyle{ k_n^{1/n} }[/math] converges to a limit as [math]\displaystyle{ n }[/math] goes to infinity.
From a paper of Dvir, Kopparty, Saraf, and Sudan it follows that [math]\displaystyle{ k_n \geq 3^n / 2^n }[/math], but this is superseded by the estimates given below.
To each of the [math]\displaystyle{ (3^n-1)/2 }[/math] directions in [math]\displaystyle{ {\mathbb F}_3^n }[/math] there correspond at least three pairs of elements in a Kakeya set, etermining this direction. Therefore, [math]\displaystyle{ \binom{k_n}{2}\ge 3\cdot(3^n-1)/2 }[/math], and hence
- [math]\displaystyle{ k_n\gtrsim 3^{(n+1)/2}. }[/math]
One can get essentially the same conclusion using the "bush" argument. There are [math]\displaystyle{ N := (3^n-1)/2 }[/math] different directions. Take a line in every direction, let E be the union of these lines, and let [math]\displaystyle{ \mu }[/math] be the maximum multiplicity of these lines (i.e. the largest number of lines that are concurrent at a point). On the one hand, from double counting we see that E has cardinality at least [math]\displaystyle{ 3N/\mu }[/math]. On the other hand, by considering the "bush" of lines emanating from a point with multiplicity [math]\displaystyle{ \mu }[/math], we see that E has cardinality at least [math]\displaystyle{ 2\mu+1 }[/math]. If we minimise [math]\displaystyle{ \max(3N/\mu, 2\mu+1) }[/math] over all possible values of [math]\displaystyle{ \mu }[/math] one obtains approximately [math]\displaystyle{ \sqrt{6N} \approx 3^{(n+1)/2} }[/math] as a lower bound of [math]\displaystyle{ |E| }[/math].
A better bound follows by using the "slices argument". Let [math]\displaystyle{ A,B,C\subset{\mathbb F}_3^{n-1} }[/math] be the three slices of a Kakeya set [math]\displaystyle{ E }[/math]. Form a graph [math]\displaystyle{ G }[/math] between [math]\displaystyle{ A }[/math] and [math]\displaystyle{ B }[/math] by connecting [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math] by an edge if there is a line in [math]\displaystyle{ E }[/math] joining [math]\displaystyle{ a }[/math] and [math]\displaystyle{ b }[/math]. The restricted sumset [math]\displaystyle{ \{a+b\colon (a,b)\in G\} }[/math] is contained in the set [math]\displaystyle{ -C }[/math], while the difference set [math]\displaystyle{ \{a-b\colon (a-b)\in G\} }[/math] is all of [math]\displaystyle{ {\mathbb F}_3^{n-1} }[/math]. Using an estimate from a paper of Katz-Tao, we conclude that [math]\displaystyle{ 3^{n-1}\le\max(|A|,|B|,|C|)^{11/6} }[/math], leading to [math]\displaystyle{ |E|\ge 3^{6(n-1)/11} }[/math].
General upper bounds
We have
- [math]\displaystyle{ k_n\le 2^{n+1}-1 }[/math]
since the set of all vectors in [math]\displaystyle{ {\mathbb F}_3^n }[/math] such that at least one of the numbers [math]\displaystyle{ 1 }[/math] and [math]\displaystyle{ 2 }[/math] is missing among their coordinates is a Kakeya set.
Another construction uses the "slices" idea and a construction of Imre Ruzsa. Let [math]\displaystyle{ A, B \subset [3]^n }[/math] be the set of strings with [math]\displaystyle{ n/3+O(\sqrt{n}) }[/math] 1's, [math]\displaystyle{ 2n/3+O(\sqrt{n}) }[/math] 0's, and no 2's; let [math]\displaystyle{ C \subset [3]^n }[/math] be the set of strings with [math]\displaystyle{ 2n/3+O(\sqrt{n}) }[/math] 2's, [math]\displaystyle{ n/3+O(\sqrt{n}) }[/math] 0's, and no 1's, and let [math]\displaystyle{ E = \{0\} \times A \cup \{1\} \times B \cup \{2\} \times C }[/math]. From Stirling's formula we have [math]\displaystyle{ |E| = (27/4 + o(1))^{n/3} }[/math]. Now I claim that for most [math]\displaystyle{ t \in [3]^{n-1} }[/math], there exists an algebraic line in the direction (1,t). Indeed, typically t will have [math]\displaystyle{ n/3+O(\sqrt{n}) }[/math] 0s, [math]\displaystyle{ n/3+O(\sqrt{n}) }[/math] 1s, and [math]\displaystyle{ n/3+O(\sqrt{n}) }[/math] 2s, thus [math]\displaystyle{ t = e + 2f }[/math] where e and f are strings with [math]\displaystyle{ n/3 + O(\sqrt{n}) }[/math] 1s and no 2s, with the 1-sets of e and f being disjoint. One then checks that the line [math]\displaystyle{ (0,f), (1,e), (2,2e+2f) }[/math] lies in E.
This is already a positive fraction of directions in [math]\displaystyle{ E }[/math]. One can use the random rotations trick to get the rest of the directions in [math]\displaystyle{ E }[/math] (losing a polynomial factor in [math]\displaystyle{ n }[/math]).
Putting all this together, we seem to have
- [math]\displaystyle{ (3^{6/11} + o(1))^n \le k_n \le ( (27/4)^{1/3} + o(1))^n }[/math]
or
- [math]\displaystyle{ (1.8207\ldots+o(1))^n \le k_n \le (1.88988+o(1))^n. }[/math]