Side Proof 4: Difference between revisions
Tomtom2357 (talk | contribs) No edit summary |
Tomtom2357 (talk | contribs) Continued Case 1.1.1 |
||
Line 19: | Line 19: | ||
+ ? + ? - + ? ? - ? 100-109 | + ? + ? - + ? ? - ? 100-109 | ||
+ - + ? - - - - ? - 110-119 | + - + ? - - - - ? - 110-119 | ||
+ + ? + - - + ? + | + + ? + - - + ? + + 120-129 | ||
+ ? + + ? + - ? - | + ? + + ? + - ? - ? 130-139 | ||
The discrepancy up to 48 is -3+f(47), so f(47)=1. The discrepancy up to 66 is 3+f(53)+f(59)+f(61), so only one of those is positive, the others are negative. Updating the table: | The discrepancy up to 48 is -3+f(47), so f(47)=1. The discrepancy up to 66 is 3+f(53)+f(59)+f(61), so only one of those is positive, the others are negative. Updating the table: | ||
Line 38: | Line 38: | ||
+ ? + ? - + ? ? - ? 100-109 | + ? + ? - + ? ? - ? 100-109 | ||
+ - + ? - - - - ? - 110-119 | + - + ? - - - - ? - 110-119 | ||
+ + ? + - - + ? + | + + ? + - - + ? + + 120-129 | ||
+ ? + + ? + - ? - | + ? + + ? + - ? - ? 130-139 | ||
It seems like we can't get very far with these assumptions, so we will now assume f(53)=1. | It seems like we can't get very far with these assumptions, so we will now assume f(53)=1. | ||
Line 60: | Line 60: | ||
+ ? + ? - + ? ? - ? 100-109 | + ? + ? - + ? ? - ? 100-109 | ||
+ - + ? - - -|- - - 110-119 | + - + ? - - -|- - - 110-119 | ||
+ + - + - - + ? + | + + - + - - + ? + + 120-129 | ||
+ ? + + ? + - ? - | + ? + + ? + - ? - ? 130-139 | ||
f[243,250] = -5-f(83), so f(83)=-1. Also, f[113,118] = -5+f(113), so f(113)=1. Updating the table: | f[243,250] = -5-f(83), so f(83)=-1. Also, f[113,118] = -5+f(113), so f(113)=1. Updating the table: | ||
Line 79: | Line 79: | ||
+ ? + ? - + + ? - ? 100-109 | + ? + ? - + + ? - ? 100-109 | ||
+ - + + - - - - - - 110-119 | + - + + - - - - - - 110-119 | ||
+ + - + - - + ? + | + + - + - - + ? + + 120-129 | ||
+ ? + + ? + - ? - | + ? + + ? + - ? - ? 130-139 | ||
It again seems like no more deductions can be made, so we will make more assumptions. | It again seems like no more deductions can be made, so we will make more assumptions. | ||
Line 102: | Line 102: | ||
+ ? + ? - + + ? - ? 100-109 | + ? + ? - + + ? - ? 100-109 | ||
+ - + + - - - - - - 110-119 | + - + + - - - - - - 110-119 | ||
+ + - + - - + ? + | + + - + - - + ? + + 120-129 | ||
+ ? + + + + - ? - | + ? + + + + - ? - ? 130-139 | ||
Now, f[775,782] = -6+f(97)+f(389), so f(97)=f(389)=1. Updating the table: | Now, f[775,782] = -6+f(97)+f(389), so f(97)=f(389)=1. Updating the table: | ||
Line 121: | Line 121: | ||
+ ? + ? - + + ? - ? 100-109 | + ? + ? - + + ? - ? 100-109 | ||
+ - + + - - - - - - 110-119 | + - + + - - - - - - 110-119 | ||
+ + - + - - + ? + | + + - + - - + ? + + 120-129 | ||
+ ? + + + + - ? - | + ? + + + + - ? - ? 130-139 | ||
It seems we can't get much further with this assumption. | It seems we can't get much further with this assumption. | ||
== Case 1.1.1: f(2)=f(7)=f(19)=f(23)=f(37)=f(53)=f(67)=f(71)=f(79)=1, f(29)=f(31)=f(43)=-1 == | == Case 1.1.1: f(2)=f(7)=f(19)=f(23)=f(37)=f(53)=f(67)=f(71)=f(79)=1, f(29)=f(31)=f(43)=-1 == | ||
Now, f[283,290] = 5+f(283), so f(283)=-1. Also, f[235,248] = -6+f(239)+f(241), so f(239)=f(241)=1. Another easy deduction is: f[227,238] = -7+f(227)+f(229)+f(233), so f(227)=f(229)=f(233)=1. | |||
There are three block inequalities that need to be resolved: | |||
1) f[169,188] = 6+f(89)+f(173)+f(179)+f(181) <= 4 | |||
2) f[715,726] = -5+f(103)+f(179)+f(181)+f(359)+f(719) >= -4 | |||
5) s(106) = 3+f(89)+f(101)+f(103) <= 2 | |||
The most useful thing I can get out of these equations is: | |||
(4)-(1)-(5)+14: -2f(89)-f(101)-f(173)+f(359)+f(719) >= 4. Therefore, f(89)=-1. | |||
Now, f[437,454] = 10-f(149)-f(151)+f(223)+f(439)+f(443)+f(449) <= 4, so f(149)=f(151)=1, and f(223)=f(439)=f(443)=f(449)=-1. Then we have that: f[129,152] = 7+f(131)+f(137)+f(139), so f(131)=f(137)=f(139)=-1. Updating the table: | |||
0 1 2 3 4 5 6 7 8 9 | |||
0|+ + - + - - + + + 0-9 | |||
- - - - + + + - + + 10-19 | |||
- - - + - + - - + - 20-29 | |||
+ - + + - - + + + + 30-39 | |||
- - - - - - + + - + 40-49 | |||
+ + - + - + + - - - 50-59 | |||
+ - - + + + + + - - 60-69 | |||
-|+ + - + - + - + + 70-79 | |||
- + - - - + - + - - 80-89 | |||
- - + + + - - + + - 90-99 | |||
+ ? + ? - + + ? - ? 100-109 | |||
+ - + + - - - - - - 110-119 | |||
+ + - + - - + ? + + 120-129 | |||
+ - + + + + - - - - 130-139 | |||
Now, f[271,280] = -7+f(271)+f(277)+f(281), so f(271)=f(277)=f(281)=1. |
Revision as of 20:45, 21 May 2015
This page will handle one of the long cases in the Human proof that completely multiplicative sequences have discrepancy greater than 3, so that the page can be shorter and not have so many long sections. Specifically, this page will take care of the case where we assume: f(2)=f(7)=f(19)=f(23)=f(37)=1, f(29)=f(31)=f(43)=-1.
Proof
Looking at the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - -|- - - + ? - + 40-49 + + - ? - + + - - ? 50-59 + ? - + +|+ + ? - - 60-69 - ? + ? + - + - + ? 70-79 - + - ? - + - + - ? 80-89 - - + + ? - - ? + - 90-99 + ? + ? - + ? ? - ? 100-109 + - + ? - - - - ? - 110-119 + + ? + - - + ? + + 120-129 + ? + + ? + - ? - ? 130-139
The discrepancy up to 48 is -3+f(47), so f(47)=1. The discrepancy up to 66 is 3+f(53)+f(59)+f(61), so only one of those is positive, the others are negative. Updating the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - -|- - - + + - + 40-49 + + - ? - + + - - ? 50-59 + ? - + +|+ + ? - - 60-69 - ? + ? + - + - + ? 70-79 - + - ? - + - + - ? 80-89 - - + + + - - ? + - 90-99 + ? + ? - + ? ? - ? 100-109 + - + ? - - - - ? - 110-119 + + ? + - - + ? + + 120-129 + ? + + ? + - ? - ? 130-139
It seems like we can't get very far with these assumptions, so we will now assume f(53)=1.
Case 1: f(2)=f(7)=f(19)=f(23)=f(37)=f(53)=1, f(29)=f(31)=f(43)=-1
If f(53)=1, then f(59)=f(61)=-1, so updating the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - -|- - - + + - + 40-49 + + - + - + + - - - 50-59 + - - + +|+ + ? - - 60-69 - ? + ? + - + - + ? 70-79 - + - ? - + - + - ? 80-89 - - + + + - - ? + - 90-99 + ? + ? - + ? ? - ? 100-109 + - + ? - - -|- - - 110-119 + + - + - - + ? + + 120-129 + ? + + ? + - ? - ? 130-139
f[243,250] = -5-f(83), so f(83)=-1. Also, f[113,118] = -5+f(113), so f(113)=1. Updating the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - -|- - - + + - + 40-49 + + - + - + + - - - 50-59 + - - + +|+ + ? - - 60-69 - ? + ? + - + - + ? 70-79 - + - - - + - + - ? 80-89 - - + + + - - ? + - 90-99 + ? + ? - + + ? - ? 100-109 + - + + - - - - - - 110-119 + + - + - - + ? + + 120-129 + ? + + ? + - ? - ? 130-139
It again seems like no more deductions can be made, so we will make more assumptions.
Case 1.1: f(2)=f(7)=f(19)=f(23)=f(37)=f(53)=f(67)=f(71)=1, f(29)=f(31)=f(43)=-1
Assume f(67)=f(71)=1. The discrepancy up to 74 is 3+f(73), so f(73)=-1. Updating the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - - - - - + + - + 40-49 + + - + - + + - - - 50-59 + - - + + + + + - - 60-69 -|+ + - + - + - + ? 70-79 - + - - - + - + - ? 80-89 - - + + + - - ? + - 90-99 + ? + ? - + + ? - ? 100-109 + - + + - - - - - - 110-119 + + - + - - + ? + + 120-129 + ? + + + + - ? - ? 130-139
Now, f[775,782] = -6+f(97)+f(389), so f(97)=f(389)=1. Updating the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - - - - - + + - + 40-49 + + - + - + + - - - 50-59 + - - + + + + + - - 60-69 -|+ + - + - + - + ? 70-79 - + - - - + - + - ? 80-89 - - + + + - - + + - 90-99 + ? + ? - + + ? - ? 100-109 + - + + - - - - - - 110-119 + + - + - - + ? + + 120-129 + ? + + + + - ? - ? 130-139
It seems we can't get much further with this assumption.
Case 1.1.1: f(2)=f(7)=f(19)=f(23)=f(37)=f(53)=f(67)=f(71)=f(79)=1, f(29)=f(31)=f(43)=-1
Now, f[283,290] = 5+f(283), so f(283)=-1. Also, f[235,248] = -6+f(239)+f(241), so f(239)=f(241)=1. Another easy deduction is: f[227,238] = -7+f(227)+f(229)+f(233), so f(227)=f(229)=f(233)=1.
There are three block inequalities that need to be resolved:
1) f[169,188] = 6+f(89)+f(173)+f(179)+f(181) <= 4 2) f[715,726] = -5+f(103)+f(179)+f(181)+f(359)+f(719) >= -4 5) s(106) = 3+f(89)+f(101)+f(103) <= 2
The most useful thing I can get out of these equations is:
(4)-(1)-(5)+14: -2f(89)-f(101)-f(173)+f(359)+f(719) >= 4. Therefore, f(89)=-1.
Now, f[437,454] = 10-f(149)-f(151)+f(223)+f(439)+f(443)+f(449) <= 4, so f(149)=f(151)=1, and f(223)=f(439)=f(443)=f(449)=-1. Then we have that: f[129,152] = 7+f(131)+f(137)+f(139), so f(131)=f(137)=f(139)=-1. Updating the table:
0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + + 0-9 - - - - + + + - + + 10-19 - - - + - + - - + - 20-29 + - + + - - + + + + 30-39 - - - - - - + + - + 40-49 + + - + - + + - - - 50-59 + - - + + + + + - - 60-69 -|+ + - + - + - + + 70-79 - + - - - + - + - - 80-89 - - + + + - - + + - 90-99 + ? + ? - + + ? - ? 100-109 + - + + - - - - - - 110-119 + + - + - - + ? + + 120-129 + - + + + + - - - - 130-139
Now, f[271,280] = -7+f(271)+f(277)+f(281), so f(271)=f(277)=f(281)=1.