Rota's conjecture: Difference between revisions
From Polymath Wiki
Jump to navigationJump to search
No edit summary |
|||
Line 1: | Line 1: | ||
The objective of this Polymath project is to prove | The objective of this Polymath project is to prove | ||
: <b>Rota's | : <b>Rota's Basis Conjecture</b>: if <math>B_1,\dots,B_n</math> are <math>n</math> bases of an <math>n</math>-dimensional vector space <math>V</math> (not necessarily distinct or disjoint), then there exists an <math>n \times n</math> grid of vectors <math>(v_{ij})</math> such that | ||
: 1. the <math>n</math> vectors in row <math>i</math> are the members of the <math>i^{th}</math> basis <math>B_i</math> (in some order), and | : 1. the <math>n</math> vectors in row <math>i</math> are the members of the <math>i^{th}</math> basis <math>B_i</math> (in some order), and | ||
: 2. in each column of the matrix, the n vectors in that column form a basis of V. | : 2. in each column of the matrix, the <math>n</math> vectors in that column form a basis of <math>V</math>. | ||
== Definitions == | == Definitions == | ||
The statement of Rota's Basis Conjecture is elementary enough that definitions are not necessary, but we present here some definitions that are used below. | |||
A <b>matroid</b> is a finite set <math>E</math> together with a family <i>ℐ</i> of subsets of <math>E</math> (called <i>independent sets</i>) such that | |||
: 1. if <math>J</math> ∈ <i>ℐ</i> and <math>I</math> ⊆ <math>J</math> then <math>I</math> ∈ <i>ℐ</i>, and | |||
: 2. if <math>I, J</math> ∈ <i>ℐ</i> and <math>|I| < |J|</math> then there exists <math>x</math> ∈ <math>J</math> such that <math>I ∪ {x}</math> ∈ <i>ℐ</i>. | |||
== Partial results == | == Partial results == |
Revision as of 17:58, 3 April 2017
The objective of this Polymath project is to prove
- Rota's Basis Conjecture: if [math]\displaystyle{ B_1,\dots,B_n }[/math] are [math]\displaystyle{ n }[/math] bases of an [math]\displaystyle{ n }[/math]-dimensional vector space [math]\displaystyle{ V }[/math] (not necessarily distinct or disjoint), then there exists an [math]\displaystyle{ n \times n }[/math] grid of vectors [math]\displaystyle{ (v_{ij}) }[/math] such that
- 1. the [math]\displaystyle{ n }[/math] vectors in row [math]\displaystyle{ i }[/math] are the members of the [math]\displaystyle{ i^{th} }[/math] basis [math]\displaystyle{ B_i }[/math] (in some order), and
- 2. in each column of the matrix, the [math]\displaystyle{ n }[/math] vectors in that column form a basis of [math]\displaystyle{ V }[/math].
Definitions
The statement of Rota's Basis Conjecture is elementary enough that definitions are not necessary, but we present here some definitions that are used below.
A matroid is a finite set [math]\displaystyle{ E }[/math] together with a family ℐ of subsets of [math]\displaystyle{ E }[/math] (called independent sets) such that
- 1. if [math]\displaystyle{ J }[/math] ∈ ℐ and [math]\displaystyle{ I }[/math] ⊆ [math]\displaystyle{ J }[/math] then [math]\displaystyle{ I }[/math] ∈ ℐ, and
- 2. if [math]\displaystyle{ I, J }[/math] ∈ ℐ and [math]\displaystyle{ |I| < |J| }[/math] then there exists [math]\displaystyle{ x }[/math] ∈ [math]\displaystyle{ J }[/math] such that [math]\displaystyle{ I ∪ {x} }[/math] ∈ ℐ.
Partial results
Variants of the problem
Discussion
- Proposal on MathOverflow (Feb 15, 2016)
- Rota’s Basis Conjecture: Polymath 12? (Feb 23, 2017)
References
- [AB2006] The intersection of a matroid and a simplicial complex, Ron Aharoni and Eli Burger, Trans. Amer. Math. Soc. 358 (2006), 4895-4917.
- [C1995] On the Dinitz conjecture and related conjectures, Timothy Chow, Disc. Math. 145 (1995), 73-82.
- [C2009] Reduction of Rota's basis conjecture to a conjecture on three bases, Timothy Chow, Siam J. Disc. Math. 23 (2009), 369-371.
- [EE2015] Furstenberg sets and Furstenberg schemes over finite fields, Jordan Ellenberg, Daniel Erman, Feb 2015.
- [GH2006] Rota's basis conjecture for paving matroids, J. Geelen, P. Humphries, SIAM J. Discrete Math. 20 (2006), no. 4, 1042–1045.
- [HKL2010] On disjoint common bases in two matroids, Nicholas J. A. Harvey, Tam´as Kir´aly, and Lap Chi Lau, TR-2010-10. Published by the Egerv´ary Research Group, P´azm´any P. s´et´any 1/C, H–1117, Budapest, Hungary.