Zero-free regions

From Polymath Wiki
Revision as of 07:57, 31 March 2018 by Teorth (talk | contribs)
Jump to navigationJump to search

The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter

[math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]

is used instead of [math]\displaystyle{ x }[/math]. The mesh evaluation techniques also require rigorous upper bounds on derivatives. In some cases the spacing of the mesh is fixed; in other cases it is adaptive based on the current value of the evaluation and on the derivative bound.


Date [math]\displaystyle{ t }[/math] [math]\displaystyle{ y }[/math] [math]\displaystyle{ x }[/math] From Method Comments
1950 [math]\displaystyle{ t \geq 0 }[/math] [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] Any De Bruijn Theorem 13 of de Bruijn
2009 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \geq C(t) }[/math] Ki-Kim-Lee Theorem 1.3 of Ki-Kim-Lee [math]\displaystyle{ C(t) }[/math] is not given explicitly.
2017 0 [math]\displaystyle{ y\gt 0 }[/math] [math]\displaystyle{ 0 \leq x \leq 6.1 \times 10^{10} }[/math] Platt Numerical verification of the Riemann hypothesis
Mar 7 2018 0.4 0.4 [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) Tao Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 10 2018 0.4 0.4 [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) KM Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms Should extend to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) Rudolph & KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 11 \leq N \leq 19 }[/math] ([math]\displaystyle{ 1520 \leq x \leq 5026 }[/math]) Rudolph & KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 22 2018 0.4 0.4 [math]\displaystyle{ x \leq 1000 }[/math] Anon/David/KM Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 22 2018 0.4 0.4 [math]\displaystyle{ 1000 \leq x \leq 1600 }[/math] Rudolph Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 22 2018 0.4 0.4 [math]\displaystyle{ 8 \leq N \leq 10 }[/math] ([math]\displaystyle{ 803 \leq x \leq 1520 }[/math]) Rudolph Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 23 2018 0.4 0.4 [math]\displaystyle{ 20 \leq x \leq 1000 }[/math] Anonymous Mesh evaluation of [math]\displaystyle{ H_t }[/math]
Mar 23 2018 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \gt \exp(C/t) }[/math] Tao Analytic bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and error terms; argument principle [math]\displaystyle{ C }[/math] is in principle an explicit absolute constant
Mar 27 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 7 \leq N \leq 300 }[/math] ([math]\displaystyle{ 615 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Mar 27 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 0 \leq x \leq 1000 }[/math] Anonymous Mesh evaluation of [math]\displaystyle{ H_t }[/math]; argument principle Completes proof of [math]\displaystyle{ \Lambda \leq 0.48 }[/math]!
Mar 31 2018 [math]\displaystyle{ 0 \leq t \leq 0.4 }[/math] [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] [math]\displaystyle{ 10^6 \leq x \leq 10^6 + 1 }[/math] KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle
Mar 31 2018 0.4 [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] [math]\displaystyle{ 0 \leq x \leq 3000 }[/math] Rudolph Third approach to [math]\displaystyle{ H_t }[/math]; argument principle