Zero-free regions
From Polymath Wiki
The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter
- [math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]
is used instead of [math]\displaystyle{ x }[/math]. The mesh evaluation techniques also require rigorous upper bounds on derivatives. In some cases the spacing of the mesh is fixed; in other cases it is adaptive based on the current value of the evaluation and on the derivative bound.
Date | [math]\displaystyle{ t }[/math] | [math]\displaystyle{ y }[/math] | [math]\displaystyle{ x }[/math] | From | Method | Comments |
---|---|---|---|---|---|---|
1950 | [math]\displaystyle{ t \geq 0 }[/math] | [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] | Any | De Bruijn | Theorem 13 of de Bruijn | Proves [math]\displaystyle{ \Lambda \leq 1/2 }[/math]. |
2004 | 0 | [math]\displaystyle{ y\gt 0 }[/math] | [math]\displaystyle{ 0 \leq x \leq 4.95 \times 10^{11} }[/math] | Gourdon-Demichel | Numerical verification of RH & Riemann-von Mangoldt formula | Results have not been independently verified |
2009 | [math]\displaystyle{ t \gt 0 }[/math] | [math]\displaystyle{ y \gt 0 }[/math] | [math]\displaystyle{ x \geq C(t) }[/math] | Ki-Kim-Lee | Theorem 1.3 of Ki-Kim-Lee | [math]\displaystyle{ C(t) }[/math] is not given explicitly. Also they show [math]\displaystyle{ \Lambda \lt 1/2 }[/math]. |
2017 | 0 | [math]\displaystyle{ y\gt 0 }[/math] | [math]\displaystyle{ 0 \leq x \leq 6.1 \times 10^{10} }[/math] | Platt | Numerical verification of the Riemann hypothesis | |
Mar 7 2018 | 0.4 | 0.4 | [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) | Tao | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms | Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] |
Mar 10 2018 | 0.4 | 0.4 | [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) | KM | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | Should extend to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) | Rudolph & KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 11 \leq N \leq 19 }[/math] ([math]\displaystyle{ 1520 \leq x \leq 5026 }[/math]) | Rudolph & KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 22 2018 | 0.4 | 0.4 | [math]\displaystyle{ x \leq 1000 }[/math] | Anon/David/KM | Mesh evaluation of [math]\displaystyle{ H_t }[/math] | |
Mar 22 2018 | 0.4 | 0.4 | [math]\displaystyle{ 1000 \leq x \leq 1600 }[/math] | Rudolph | Mesh evaluation of [math]\displaystyle{ H_t }[/math] | |
Mar 22 2018 | 0.4 | 0.4 | [math]\displaystyle{ 8 \leq N \leq 10 }[/math] ([math]\displaystyle{ 803 \leq x \leq 1520 }[/math]) | Rudolph | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 23 2018 | 0.4 | 0.4 | [math]\displaystyle{ 20 \leq x \leq 1000 }[/math] | Anonymous | Mesh evaluation of [math]\displaystyle{ H_t }[/math] | |
Mar 23 2018 | [math]\displaystyle{ t \gt 0 }[/math] | [math]\displaystyle{ y \gt 0 }[/math] | [math]\displaystyle{ x \gt \exp(C/t) }[/math] | Tao | Analytic bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and error terms; argument principle | [math]\displaystyle{ C }[/math] is in principle an explicit absolute constant |
Mar 27 2018 | 0.4 | [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] | [math]\displaystyle{ 7 \leq N \leq 300 }[/math] ([math]\displaystyle{ 615 \leq x \leq 1.13 \times 10^6 }[/math]) | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle | |
Mar 27 2018 | 0.4 | [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] | [math]\displaystyle{ 0 \leq x \leq 1000 }[/math] | Anonymous | Mesh evaluation of [math]\displaystyle{ H_t }[/math]; argument principle | Completes proof of [math]\displaystyle{ \Lambda \leq 0.48 }[/math]! |
Mar 31 2018 | [math]\displaystyle{ 0 \leq t \leq 0.4 }[/math] | [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] | [math]\displaystyle{ 10^6 \leq x \leq 10^6 + 1 }[/math] | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle | |
Mar 31 2018 | 0.4 | [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] | [math]\displaystyle{ 0 \leq x \leq 3000 }[/math] | Rudolph | Third approach to [math]\displaystyle{ H_t }[/math]; argument principle | |
Apr 6 2018 | [math]\displaystyle{ 0 \leq t \leq 0.2 }[/math] | [math]\displaystyle{ 0.4 \leq y \leq 1 }[/math] | [math]\displaystyle{ 5 \times 10^9 \leq x \leq 5 \times 10^9+1 }[/math] | KM, Rudolph, David, Anonymous | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms; argument principle | |
Apr 6 2018 | 0.2 | [math]\displaystyle{ y = 0.4 }[/math] | [math]\displaystyle{ N \geq 300000 (x \geq 1.13 \times 10^{12}) }[/math] | KM | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms |