ABC conjecture
From Polymath Wiki
The abc conjecture asserts, roughly speaking, that if a+b=c and a,b,c are coprime, then a,b,c cannot all be too smooth; in particular, the product of all the primes dividing a, b, or c has to exceed [math]\displaystyle{ c^{1-\varepsilon} }[/math] for any fixed [math]\displaystyle{ \varepsilon \gt 0 }[/math] (if a,b,c are smooth).
This shows for instance that [math]\displaystyle{ (1-\varepsilon) \log N / 3 }[/math]-smooth a,b,c of size N which are coprime cannot sum to form a+b=c. This unfortunately seems to be too weak to be of much use for the finding primes project.