Representation of the diagonal

From Polymath Wiki
Revision as of 20:32, 30 April 2010 by Alec (talk | contribs) (We only need the sum of the coefficients to be less than or equal to 1.)
Jump to navigationJump to search

The following conjecture, if true, would imply the Erdos discrepancy conjecture.


For all [math]\displaystyle{ C \gt 0 }[/math] there exists a diagonal matrix with trace at least [math]\displaystyle{ C }[/math] that can be expressed as [math]\displaystyle{ \sum_i \lambda_i P_i \otimes Q_i }[/math], where [math]\displaystyle{ \sum_i | \lambda_i | \leq 1 }[/math] and each [math]\displaystyle{ P_i }[/math] and [math]\displaystyle{ Q_i }[/math] is the characteristic function of a HAP.


Proof of implication

Suppose [math]\displaystyle{ D }[/math] is a diagonal matrix with entries [math]\displaystyle{ b_j }[/math] on the diagonal, with [math]\displaystyle{ \sum_j b_j }[/math] unbounded, and [math]\displaystyle{ D = \sum_i \lambda_i P_i \otimes Q_i }[/math] where [math]\displaystyle{ \sum_i | \lambda_i | \leq 1 }[/math] and the [math]\displaystyle{ P_i }[/math] and [math]\displaystyle{ Q_i }[/math] are HAPs. Suppose [math]\displaystyle{ x }[/math] is a [math]\displaystyle{ \pm 1 }[/math] sequence with finite discrepancy [math]\displaystyle{ C }[/math]. Then we can write [math]\displaystyle{ | \langle x, Dx \rangle | }[/math] in two ways. On the one hand, [math]\displaystyle{ | \langle x, Dx \rangle | = | \sum_j b_j x_j^2 | = | \sum_j b_j | }[/math], which is unbounded; on the other hand, [math]\displaystyle{ | \langle x, Dx \rangle | = | \langle x, \sum_i \lambda_i (P_i \otimes Q_i) x \rangle | = | \sum_i \lambda_i \langle x, P_i \rangle \langle x, Q_i \rangle | \leq \sum_i | \lambda_i | | \langle x, P_i \rangle | | \langle x, Q_i \rangle | \leq C^2 }[/math], a contradiction.

Possible proof strategies

Heuristic arguments

Numerical results