Proof of DHJ(3) via density-increment
Introduction
This article is intended to contain a proof outline of DHJ([math]\displaystyle{ 3 }[/math]) via the density-increment method. The proofs of each step in the outline will appear in separate articles. The goal is to rigorously codify the "second outline" proof. A secondary goal is to write the proof in such a way that it becomes "easy" to see the generalization to DHJ([math]\displaystyle{ k }[/math]).
Notation and definitions
We'll call the main probability distribution we work with the Pólya Urn distribution. As a distribution on [math]\displaystyle{ [k]^n }[/math], we'll write it as [math]\displaystyle{ \nu_k^n }[/math], or as [math]\displaystyle{ \nu_k }[/math] or [math]\displaystyle{ \nu }[/math] if it's clear from context. (Note: even if one only wants to prove DHJ([math]\displaystyle{ 3 }[/math]), one needs to define [math]\displaystyle{ \nu_k^n }[/math] for general [math]\displaystyle{ k }[/math].) One way to define it is as follows: Order the coordinates [math]\displaystyle{ [n] }[/math] in a list according to a random permutation. Now choose [math]\displaystyle{ k-1 }[/math] distinct "partition points" uniformly at random from the [math]\displaystyle{ \binom{n+1}{k-1} }[/math] possibilities. This partitions the list of coordinates into [math]\displaystyle{ k }[/math] sublists; take the [math]\displaystyle{ 1 }[/math]st sublist of coordinates to be [math]\displaystyle{ 1 }[/math]'s, the [math]\displaystyle{ 2 }[/math]nd sublist to be [math]\displaystyle{ 2 }[/math]'s, etc. Note that any string drawn from the Pólya Urn distribution is nondegenerate, meaning it contains at least one of each character in [math]\displaystyle{ [3] }[/math].
A closely related distribution is called the Equal Slices distribution. We will denote this distribution by [math]\displaystyle{ \overline{\nu}_k^n }[/math]. It has the same definition as the Pólya Urn definition just given, except that the [math]\displaystyle{ k-1 }[/math] partition points are "allowed to be equal"; more precisely, we choose the [math]\displaystyle{ 1 }[/math]st partition point uniformly from the [math]\displaystyle{ n+1 }[/math] possibilities, then we choose the [math]\displaystyle{ 2 }[/math]nd partition point uniformly from the [math]\displaystyle{ n+2 }[/math] possibilities, etc. It should be clear from these definitions that the total variation distance between [math]\displaystyle{ \nu_k^n }[/math] and [math]\displaystyle{ \overline{\nu}_k^n }[/math] is small. Here is a proof that it is [math]\displaystyle{ O(k^2/n) }[/math].
We identify combinatorial lines in [math]\displaystyle{ [3]^n }[/math] with strings in [math]\displaystyle{ [4]^n }[/math], where the [math]\displaystyle{ 4 }[/math] character is treated as identifying the "wildcard" set. Similarly, we identify [math]\displaystyle{ 2 }[/math]-dimensional combinatorial subspaces in [math]\displaystyle{ [3]^n }[/math] with strings in [math]\displaystyle{ [5]^n }[/math], where the characters [math]\displaystyle{ 4 }[/math] and [math]\displaystyle{ 5 }[/math] identify the [math]\displaystyle{ 2 }[/math] wildcard sets. Etc. Note that a combinatorial line in [math]\displaystyle{ [3]^n }[/math] drawn from [math]\displaystyle{ \nu_4^n }[/math] is automatically nondegenerate. Henceforth, whenever we say "combinatorial line" or "combinatorial subspace" without qualification, the object is assumed to be nondegenerate.
Although we will prove DHJ([math]\displaystyle{ 3 }[/math]) for sets that are dense under [math]\displaystyle{ \nu_3 }[/math], this also proves it for sets that are dense under the usual uniform distribution; this should be explicated in the article on passing between measures.
Proof Outline
Here is the sequence of statements we prove:
1. Dense sets in [math]\displaystyle{ [2]^n }[/math] contain lines (i.e., DHJ([math]\displaystyle{ 2 }[/math])).
2. Dense sets in [math]\displaystyle{ [2]^n }[/math] contain large subspaces.
3. Dense ij-insensitive sets in [math]\displaystyle{ [3]^n }[/math] contain large subspaces.
4. Dense [math]\displaystyle{ ij }[/math]-insensitive sets in [math]\displaystyle{ [3]^n }[/math] are large-subspace rich.
5. Dense [math]\displaystyle{ ij }[/math]-insensitive sets in [math]\displaystyle{ [3]^n }[/math] are large-subspace partitionable.
6. Dense intersections of [math]\displaystyle{ ij }[/math]-insensitive sets in [math]\displaystyle{ [3]^n }[/math] are large-subspace partitionable.
7. Line-free sets in [math]\displaystyle{ [3]^n }[/math] have density increments on dense intersections of [math]\displaystyle{ ij }[/math]-insensitive sets.
8. Line-free sets in [math]\displaystyle{ [3]^n }[/math] have density increments on large subspaces.
9. Dense sets in [math]\displaystyle{ [3]^n }[/math] contain lines (i.e., DHJ([math]\displaystyle{ 3 }[/math])).
Sets in [math]\displaystyle{ [2]^n }[/math] have lines
This is simply Sperner's Theorem. Our version, with the Pólya Urn distribution, is:
- Theorem 1: Let [math]\displaystyle{ A \subseteq [2]^n }[/math] have [math]\displaystyle{ \nu_2 }[/math]-density at least [math]\displaystyle{ \delta }[/math]. Assume that [math]\displaystyle{ n \geq n_1(\delta) }[/math], where [math]\displaystyle{ n_1(\delta) = O(1/\delta^2) }[/math]. Then [math]\displaystyle{ A }[/math] contains a combinatorial ([math]\displaystyle{ 2 }[/math]-)line.
- Proof of Sperner's Theorem. For now, the proof more or less appears in the article on Sperner's Theorem; we might want to use the writeup ideas in the current article on Equal Slices. The easiest proof involves first passing from Pólya to Equal Slices. I think you only need [math]\displaystyle{ n_1(\delta) \gt 1/\delta^2 + 1 }[/math] or something.
Sets in [math]\displaystyle{ [2]^n }[/math] have subspaces
am in the middle of changing around steps 2 and 3 slightly, the below should also mention that the quantitatives are better in the GRS paper
The current best writeup of this is here. The technical bits to fill in are showing that if one does Pólya on some small random subset [math]\displaystyle{ S \subseteq [n] }[/math], and then combines this with an independent Pólya draw on [math]\displaystyle{ [n] \setminus S }[/math], the overall draw is very close in total variation distance to a normal Pólya draw. This is proved rather explicitly in the passing between measures article. (Presumably there is also literature from the Pólya Urn studiers on this, too.)
[math]\displaystyle{ ij }[/math]-insensitive sets in [math]\displaystyle{ [3]^n }[/math] have subspaces
Let [math]\displaystyle{ i,j \in [k] }[/math] be distinct characters. We define [math]\displaystyle{ A \subseteq [k]^n }[/math] to be an "[math]\displaystyle{ ij }[/math]-insensitive set" if for all strings [math]\displaystyle{ x }[/math], changing [math]\displaystyle{ i }[/math]'s to [math]\displaystyle{ j }[/math]'s in [math]\displaystyle{ x }[/math] or vice versa does not change whether or not [math]\displaystyle{ x \in A }[/math].
An [math]\displaystyle{ ij }[/math]-insensitive in [math]\displaystyle{ [k]^n }[/math] is elsewhere on the blog called a "[math]\displaystyle{ 1 }[/math]-set", being a special case of a special set of complexity [math]\displaystyle{ 1 }[/math]. See also this article discussing the complexity of sets.
The statement we prove here is:
- Lemma 3: Let [math]\displaystyle{ A \subseteq [3]^n }[/math] be an [math]\displaystyle{ ij }[/math]-insensitive set with [math]\displaystyle{ \nu_2 }[/math]-density at least [math]\displaystyle{ \delta }[/math]. Assume that [math]\displaystyle{ n \geq n_3(\delta) = \sqrt{2/\delta} \cdot n_2(\delta/2, d) }[/math]. Then [math]\displaystyle{ A }[/math] contains a [math]\displaystyle{ d }[/math]-dimensional combinatorial subspace.
We sketch the proof here, for now.
- Proof: (Sketch.) Assume without loss of generality that [math]\displaystyle{ i = 2 }[/math], [math]\displaystyle{ j = 3 }[/math]. We can think of a draw [math]\displaystyle{ x \sim \nu_3^n }[/math] by first conditioning on the set of coordinates [math]\displaystyle{ S }[/math] where [math]\displaystyle{ x }[/math] has its [math]\displaystyle{ 3 }[/math]'s, and then drawing the remainder of the string as [math]\displaystyle{ y \sim \nu_2^{|\overline{S}|} }[/math], where [math]\displaystyle{ \overline{S} = [n] \setminus S }[/math]. (This requires a quick justification.) Inventing some notation, we have [math]\displaystyle{ \mathbf{E}_S[\nu_2(A_S)] = \delta }[/math]. Further, it should be easy to check that [math]\displaystyle{ \mathbf{Pr}[|\overline{S}| \lt \gamma n] \leq \gamma^2 }[/math] (or perhaps only a tiny bit higher). Hence [math]\displaystyle{ \mathbf{E}_S[\nu_2(A_S) \mid |\overline{S}| \geq \gamma n] \geq \delta - \gamma^2. }[/math] We set [math]\displaystyle{ \gamma = \sqrt{\delta/2} }[/math] and conclude that there exists a particular set of [math]\displaystyle{ 3 }[/math]-coordinates [math]\displaystyle{ S_0 }[/math] such that [math]\displaystyle{ \nu_2(A_{S_0}) \geq \delta/2 }[/math] and [math]\displaystyle{ |\overline{S_0}| \geq \sqrt{\delta/2} n }[/math]. By choice of [math]\displaystyle{ n_2 }[/math], this lets us apply Theorem 2 to conclude that [math]\displaystyle{ A_{S_0} \subseteq [2]^{S_0} }[/math] contains a [math]\displaystyle{ d }[/math]-dimensional combinatorial subspace; call it [math]\displaystyle{ \sigma }[/math].
- Pulling [math]\displaystyle{ \sigma }[/math] back into [math]\displaystyle{ [3]^n }[/math] by putting [math]\displaystyle{ 3 }[/math]'s into the [math]\displaystyle{ S }[/math] coordinates, we get a [math]\displaystyle{ d }[/math]-dimensional "[math]\displaystyle{ 2 }[/math]-subspace" in [math]\displaystyle{ A \subseteq [3]^n }[/math]. But in fact, all of the strings necessary to fill this out into a complete [math]\displaystyle{ d }[/math]-dimensional subspace in [math]\displaystyle{ [3]^n }[/math] must also be present in [math]\displaystyle{ A }[/math], because [math]\displaystyle{ A }[/math] is [math]\displaystyle{ 23 }[/math]-insensitive. [math]\displaystyle{ \Box }[/math] (somewhat poorly explained)
[math]\displaystyle{ ij }[/math]-insensitive sets are subspace rich
This is sketched originally here, and should be provable rather nicely using the ideas in the last paragraph of [document].
[math]\displaystyle{ ij }[/math]-insensitive sets are subspace partitionable
This is currently written fairly thoroughly here, though some of the details of the density/probability calculations are sketched.
Intersections of [math]\displaystyle{ ij }[/math]-insensitive sets are subspace partitionable
Currently written here.
Line-free sets increment on intersections of [math]\displaystyle{ ij }[/math]-insensitive sets
Written mostly completely here.
Line-free sets increment on subspaces
Sketch here.
Sets in [math]\displaystyle{ [3]^n }[/math] have lines
The basic idea is described in the article on the density increment method.