Roth's theorem

From Polymath Wiki
Revision as of 08:51, 14 February 2009 by Teorth (talk | contribs) (New page: '''Roth's theorem''' (<math>{\Bbb Z}/N{\Bbb Z}</math> version) If N is sufficiently large depending on <math>\delta > 0</math>, then any subset A of <math>[N]</math> of density at least <m...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Roth's theorem ([math]\displaystyle{ {\Bbb Z}/N{\Bbb Z} }[/math] version) If N is sufficiently large depending on [math]\displaystyle{ \delta \gt 0 }[/math], then any subset A of [math]\displaystyle{ [N] }[/math] of density at least [math]\displaystyle{ \delta }[/math] contains an arithmetic progression x, x+r, x+2r with [math]\displaystyle{ r \gt 0 }[/math].

Roth's theorem ([math]\displaystyle{ [3]^n }[/math] version) If n is sufficiently large depending on [math]\displaystyle{ \delta \gt 0 }[/math], then any subset of [math]\displaystyle{ [3]^n }[/math] of density at least [math]\displaystyle{ \delta }[/math] contains an algebraic line, i.e. a triple (x,x+r,x+2r) where r is non-zero and we identify [math]\displaystyle{ [3]^n }[/math] with [math]\displaystyle{ ({\Bbb Z}/3{\Bbb Z})^n }[/math].