Longest constrained sequences
From Polymath Wiki
The numbers in square brackets show (what we know of) the length of the longest sequence satisfying the given constraints exactly. The notation [math]\displaystyle{ a=b }[/math] is shorthand for [math]\displaystyle{ T_a(x) = T_b(x) }[/math], and [math]\displaystyle{ a=-b }[/math] for [math]\displaystyle{ T_a(x) = -T_b(x) }[/math].
1 = +2 : [170] 1 = -2 : [>=974] 1 = -2, 1 = +3 : [188] 1 = -2, 1 = -3 : [470] 1 = -2, 1 = +5 : [356] 1 = -2, 1 = -5 : [>=974] 1 = -2, 1 = -5, 1 = +7 : [>=566] 1 = -2, 1 = -5, 11 = -13 : [>=974] 2 = +3 : [>=514] 2 = -3 : [>=587]