The polynomial Hirsch conjecture
From Polymath Wiki
The polynomial Hirsch conjecture (or polynomial diameter conjecture) states the following:
- Polynomial Diameter Conjecture: Let G be the graph of a d-polytope with n facets. Then the diameter of G is bounded above by a polynomial of d and n.
One approach to this problem is purely combinatorial. It is known that this conjecture follows from
- Combinatorial polynomial Hirsch conjecture: Consider t disjoint families of subsets [math]\displaystyle{ F_1,\ldots,F_t }[/math] of [math]\displaystyle{ \{1,\ldots,n\} }[/math]. Suppose that
- For every [math]\displaystyle{ i \lt j \lt k }[/math], and every [math]\displaystyle{ S \in F_i }[/math] and [math]\displaystyle{ T \in F_k }[/math], there exists [math]\displaystyle{ R \in F_j }[/math] such that [math]\displaystyle{ S \cap T \subset R }[/math].
- Can one give a bound on t which is of polynomial size in n?
Threads
- The polynomial Hirsch conjecture, a proposal for Polymath 3 (July 17, 2009)
- The polynomial Hirsch conjecture, a proposal for Polymath 3 cont. (July 28, 2009)
- The polynomial Hirsch conjecture - how to improve the upper bounds (July 30, 2009)
- The Polynomial Hirsch Conjecture: Discussion Thread (Aug 9, 2009)
- The Polynomial Hirsch Conjecture: Discussion Thread, Continued (Oct 6, 2009)
- Plans for polymath3 (Dec 8, 2009)
- The Polynomial Hirsch Conjecture: The Crux of the Matter. (Jun 19, 2010)
- Polynomial Hirsch Conjecture (Sep 29, 2010)
Possible strategies
Partial results and remarks
In the setting of the combinatorial Hirsch conjecture, one can obtain the bound [math]\displaystyle{ t \leq n^{\log n + 1} }[/math] by an elementary argument, given here.
In [EHRR] it is noted that t can be of quadratic size in n.
Background and terminology
(Maybe some history of the Hirsch conjecture here?)
The disproof of the Hirsch conjecture
- The Hirsch conjecture: The graph of a d-polytope with n facets has diameter at most n-d.
This conjecture was recently disproven by Francisco Santos [S].
- Santos's page on the Hirsch conjecture
- Francisco Santos Disproves the Hirsch Conjecture (May 10, 2010)
- “A Counterexample to the Hirsch Conjecture,” is Now Out (Jun 15, 2010)
Bibliography
(Expand this biblio!)
- [EHRR] Freidrich Eisenbrand, Nicolai Hahnle, Sasha Razborov, and Thomas Rothvoss, "Diameter of Polyhedra: The Limits of Abstraction", preprint.
- [S] Francisco Santos, "A counterexample to the Hirsch conjecture", preprint.
Other links
- Math Overflow thread: A Combinatorial Abstraction for The “Polynomial Hirsch Conjecture”