Timeline

From Polymath Wiki
Revision as of 20:32, 1 March 2009 by Teorth (talk | contribs)
Jump to navigationJump to search
Date General Uniformity Ergodic theory Small n
Jan 26 Nielsen: Doing science online
Jan 27 Gowers: Is massively collaborative mathematics possible?
Jan 28 Kalai: Mathematics, science, and blogs
Jan 30 Gowers: Background to a polymath project

Nielsen: Is massively collaborative mathematics possible?

Feb 1 Gowers: Questions of procedure

Gowers: A combinatorial approach to DHJ (1-199)

Gowers: Why this particular problem?

Tao: A massively collaborative mathematical project

Trevisan: A people's history of mathematics

Solymosi.2: IP-corners problem proposed

Tao.4: Analytic proof of Sperner? Regularisation needed?

Hoang.4: Naive Varnavides for DHJ fails

Gowers.1: Carlson-Simpson theorem useful?

Tao.4: Stationarity useful?

Feb 2 Gowers.9: Reweighting vertices needed for Varnavides?

Tao.17: Should use [math]\displaystyle{ O(\sqrt{n}) }[/math] wildcards

Tao.18: Use rich slices?

Gowers.19: Collect obstructions to uniformity!

Kalai.29: Fourier-analytic proof of Sperner?

O'Donnell.32: Use uniform distribution on slices

Gowers.38: Can't fix # wildcards in advance

Tao.39: Can take # wildcards to be O(1)

Bukh.44: Obstructions to Kruskal-Katona?

Tao.8: [math]\displaystyle{ c_0=1 }[/math], [math]\displaystyle{ c_1=2 }[/math], [math]\displaystyle{ c_2=6 }[/math], [math]\displaystyle{ 3^{n-O(\sqrt{n}} \leq c_n \leq o(3^n) }[/math]

Kalai.15: [math]\displaystyle{ c_n \gg 3^n/\sqrt{n} }[/math]

Tao.39: [math]\displaystyle{ c_n \geq 3^{n-O(\sqrt{\log n})} }[/math]

Tao.40: [math]\displaystyle{ c_3=18 }[/math]

Elsholtz.43: Moser(3)?

Feb 3 Nielsen: The polymath project Gowers.64: Use local equal-slices measure?

Gowers.70: Collection of obstructions to uniformity begins

Tao.86: Use Szemeredi's proof of Roth?

Jakobsen.59: [math]\displaystyle{ c_4 \geq 49 }[/math]

Tao.78: [math]\displaystyle{ c_4 \leq 54 }[/math]

Neylon.83: [math]\displaystyle{ 52 \leq c_4 \leq 54 }[/math], [math]\displaystyle{ 140 \leq c_5 \leq 162 }[/math]

Feb 4 Gowers: Quick question Tao.100: Use density incrementation?

Tao.118: Szemeredi's proof of Roth looks inapplicable

Jakobsen.90: [math]\displaystyle{ c_4=52 }[/math]
Feb 5 Tao.130: DHJ(2.5)?

Bukh.132, O'Donnell.133, Solymosi.135: Proof of DHJ(2.5)

Tao.148: Obstructions to uniformity summarised

Tao: Upper and lower bounds for DHJ (200-299)
Feb 6 Solymosi.155 Pair removal for Kneser graphs

Gowers: The triangle removal approach (300-399)

Neylon.201 Greedy algorithm

Tao.206 Use [math]\displaystyle{ D_n }[/math]

Feb 7 Gowers.335 DHJ(j,k) introduced Jakobsen.207 [math]\displaystyle{ c_5 \geq 150 }[/math], [math]\displaystyle{ c_6 \geq 450 }[/math]

Peake.217 [math]\displaystyle{ c_7 \geq 1308 }[/math], [math]\displaystyle{ c_8 \geq 3780 }[/math]

Peake.218 Lower bounds up to [math]\displaystyle{ c_{15} }[/math]

Feb 8 Gowers: Quasirandomness and obstructions to uniformity (400-499)

Tao.402 Standard obstruction to uniformity?

Gowers.403 Complexity 1 sets are more fundamental obstructions

Gowers.411 Are global complexity 1 sets the only obstructions?

Peake.219 [math]\displaystyle{ c_{99} \geq 3^{98} }[/math]

Tao.225 Spreadsheet set up

Feb 9 Nielsen: Update on the polymath project Bukh.412 Negative answer to Gowers' question

Gowers.365 Equal slices measure introduced

Tao.419 Use low-influence instead of complexity 1?

Gowers.420 Need DHJ(0,2)

Tao.431 Use local obstructions rather than global obstructions?

Kalai.233 Higher k?
Feb 10 Tao.439 Use hypergraph regularity? Peake.241 [math]\displaystyle{ c_5 \leq 155 }[/math]; xyz notation

Peake.243 [math]\displaystyle{ c_5 \leq 154 }[/math]

Feb 11 Tao.470: Proto-wiki created Tao.451 01-insensitive case OK

Kalai.455 Hyper-optimistic conjecture

Tao.460 Connections with ergodic approach

Tao: A reading seminar on DHJ (600-699)

Tao.249: [math]\displaystyle{ \overline{c}^\mu_0 = 1 }[/math], [math]\displaystyle{ \overline{c}^\mu_1 = 2 }[/math], [math]\displaystyle{ \overline{c}^\mu_2 = 4 }[/math]

Dyer.254 [math]\displaystyle{ \overline{c}^\mu_3 = 6 }[/math]

Feb 12 Wiki set up O'Donnell.476 Fourier-analytic Sperner computations

McCutcheon.480 Strong Roth theorem proposed

D Jakobsen.257 [math]\displaystyle{ \overline{c}^\mu_4 = 9 }[/math]

Jakobsen.258 [math]\displaystyle{ \overline{c}^\mu_5 = 12 }[/math]

Peake.262 Extremisers for [math]\displaystyle{ c_4 }[/math]

Feb 13 Gowers: Possible proof strategies (500-599) McCutcheon.505 IP uniformity norms? Tao: Bounds for first few DHJ numbers (700-799)
Feb 14 Gowers.496: Equal slices implies uniform McCutcheon.508 Ergodic proof strategy

Tao.510 Finitary analogue of stationarity

Sauvaget: A proof that [math]\displaystyle{ c_5=154 }[/math]?
Feb 15 Tao.498: Uniform implies equal slices

Tao.514 DHJ(2.6) proposed

McCutcheon.518 Ramsey proof of DHJ(2.6)

D Sauvaget: A new strategy for computing [math]\displaystyle{ c_n }[/math]

Markström.706: Integer program, [math]\displaystyle{ c_5=150 }[/math]

Cantwell.708: [math]\displaystyle{ c_6=450 }[/math]

Feb 16 Tao.524 Simplification of proof

O'Donnell 529 Ramsey-free proof of DHJ(2.6)?

McCutcheon.533 Ramsey theory incompatible with symmetry

D Peake.730 [math]\displaystyle{ c_5 }[/math] extremisers

Tao.731 Human proof that [math]\displaystyle{ c_5 \leq 152 }[/math]; [math]\displaystyle{ c_7 \leq 1348 }[/math]

Feb 17 Tao.536 Fourier-analytic proof of DHJ(2.6)

McCutcheon.541 "Cave-man" proof of DHJ(2.6)

D Chua.736 [math]\displaystyle{ c'_5 \geq 124 }[/math]

Peake.738 Connection between Moser(3) and sphere packing

Feb 18 Gowers.544 Corners(1,3)?

Gowers.545 Fourier computations on equal-slices measure begin

D Markström.739 [math]\displaystyle{ c_6 }[/math] extremiser unique
Feb 19 C D Markström.742 43-point Moser sets in [math]\displaystyle{ [3]^4 }[/math] listed

Peake.743 43-point sets analysed

Cantwell.744 [math]\displaystyle{ c'_5 \leq 128 }[/math]

Tao.745 50+ point line-free sets in [math]\displaystyle{ [3]^4 }[/math] listed

Feb 20 Vipulniak: [1] Solymosi.563 Moser(6) implies DHJ(3) D Markström.747 42-point Moser sets listed

Peake.751 Human proof of [math]\displaystyle{ c_5 \leq 151 }[/math]

Feb 21 Gowers: To thread or not to thread Gowers.580 Extreme localisation + density increment = DHJ(3)?

Gowers.581 Multidimensional Sperner

Tao.578 Finitary ergodic proof of DHJ(2) proposed Peake.752 Human proof of [math]\displaystyle{ c_5=150 }[/math], [math]\displaystyle{ c_6=450 }[/math]

Tao.753 Sequences submitted to OEIS

Feb 22 C D
Feb 23 B McCutcheon.593 DHJ(2.7)

O'Donnell.596 Fourier-analytic proof of DHJ(2)

Gowers: Brief review of polymath1 (800-849)

D Markström.463 42-point Moser sets analysed

Tao.464 [math]\displaystyle{ c'_5 \leq 127 }[/math]

Chua.766 3D Moser sets with 222 have [math]\displaystyle{ \leq 13 }[/math] points

Tao.767 4D Moser sets with 2222 have [math]\displaystyle{ \leq 39 }[/math] points

Feb 24 C D
Feb 25 C D Cantwell.769 5D Moser sets with 2222* have [math]\displaystyle{ \leq 124 }[/math] points

Peake.771 Exotic 43-point Moser sets described

Feb 26 C D
Feb 27 C D Elsholtz.775 Human proof of 2222* result

Cantwell.776 [math]\displaystyle{ c'_5 \leq 126 }[/math]

Feb 28 C D Markström.779 41-point Moser sets listed
Mar 1 C D Cantwell.782, Peake.784: [math]\displaystyle{ c'_5 \leq 125 }[/math]
Mar 2 Gowers: DHJ 851-899 D