Timeline

From Polymath Wiki
Revision as of 21:15, 1 March 2009 by Teorth (talk | contribs)
Jump to navigationJump to search

Some highlights of the polymath1 project to date.

Date General Uniformity Ergodic theory Small n
Jan 26 Nielsen: Doing science online
Jan 27 Gowers: Is massively collaborative mathematics possible?
Jan 28 Kalai: Mathematics, science, and blogs
Jan 30 Gowers: Background to a polymath project

Nielsen: Is massively collaborative mathematics possible?

Feb 1 Gowers: Questions of procedure

Gowers: A combinatorial approach to DHJ (1-199)

Gowers: Why this particular problem?

Tao: A massively collaborative mathematical project

Trevisan: A people's history of mathematics

Solymosi.2: IP-corners problem proposed

Tao.4: Analytic proof of Sperner? Regularisation needed?

Hoang.4: Naive Varnavides for DHJ fails

Gowers.1: Carlson-Simpson theorem useful?

Tao.4: Stationarity useful?

Feb 2 Gowers.9: Reweighting vertices needed for Varnavides?

Tao.17: Should use [math]\displaystyle{ O(\sqrt{n}) }[/math] wildcards

Tao.18: Use rich slices?

Gowers.19: Collect obstructions to uniformity!

Kalai.29: Fourier-analytic proof of Sperner?

O'Donnell.32: Use uniform distribution on slices

Gowers.38: Can't fix # wildcards in advance

Tao.39: Can take # wildcards to be O(1)

Bukh.44: Obstructions to Kruskal-Katona?

Tao.8: [math]\displaystyle{ c_0=1 }[/math], [math]\displaystyle{ c_1=2 }[/math], [math]\displaystyle{ c_2=6 }[/math], [math]\displaystyle{ 3^{n-O(\sqrt{n}} \leq c_n \leq o(3^n) }[/math]

Kalai.15: [math]\displaystyle{ c_n \gg 3^n/\sqrt{n} }[/math]

Tao.39: [math]\displaystyle{ c_n \geq 3^{n-O(\sqrt{\log n})} }[/math]

Tao.40: [math]\displaystyle{ c_3=18 }[/math]

Elsholtz.43: Moser(3)?

Feb 3 Nielsen: The polymath project Gowers.64: Use local equal-slices measure?

Gowers.70: Collection of obstructions to uniformity begins

Tao.86: Use Szemeredi's proof of Roth?

Jakobsen.59: [math]\displaystyle{ c_4 \geq 49 }[/math]

Tao.78: [math]\displaystyle{ c_4 \leq 54 }[/math]

Neylon.83: [math]\displaystyle{ 52 \leq c_4 \leq 54 }[/math], [math]\displaystyle{ 140 \leq c_5 \leq 162 }[/math]

Feb 4 Gowers: Quick question Tao.100: Use density incrementation?

Tao.118: Szemeredi's proof of Roth looks inapplicable

Jakobsen.90: [math]\displaystyle{ c_4=52 }[/math]
Feb 5 Tao.130: DHJ(2.5)?

Bukh.132, O'Donnell.133, Solymosi.135: Proof of DHJ(2.5)

Tao.148: Obstructions to uniformity summarised

Tao: Upper and lower bounds for DHJ (200-299)
Feb 6 Solymosi.155: Pair removal for Kneser graphs

Gowers: The triangle removal approach (300-399)

Neylon.201: Greedy algorithm

Tao.206: Use [math]\displaystyle{ D_n }[/math]

Feb 7 Gowers.335: DHJ(j,k) introduced Jakobsen.207: [math]\displaystyle{ c_5 \geq 150 }[/math], [math]\displaystyle{ c_6 \geq 450 }[/math]

Peake.217: [math]\displaystyle{ c_7 \geq 1308 }[/math], [math]\displaystyle{ c_8 \geq 3780 }[/math]

Peake.218: Lower bounds up to [math]\displaystyle{ c_{15} }[/math]

Feb 8 Gowers: Quasirandomness and obstructions to uniformity: (400-499)

Ajtai-Szemeredi approach proposed

Tao.402: Standard obstruction to uniformity?

Gowers.403: Complexity 1 sets are more fundamental obstructions

Gowers.411: Are global complexity 1 sets the only obstructions?

Peake.219: [math]\displaystyle{ c_{99} \geq 3^{98} }[/math]

Tao.225: Spreadsheet set up

Feb 9 Nielsen: Update on the polymath project Bukh.412: Negative answer to Gowers' question

Gowers.365: Equal slices measure introduced

Tao.419: Use low-influence instead of complexity 1?

Gowers.420: Need DHJ(0,2)

Tao.431: Use local obstructions rather than global obstructions?

Kalai.233: Higher k?
Feb 10 Tao.439: Use hypergraph regularity? Peake.241: [math]\displaystyle{ c_5 \leq 155 }[/math]; xyz notation

Peake.243: [math]\displaystyle{ c_5 \leq 154 }[/math]

Feb 11 Tao.470: Proto-wiki created Tao.451: 01-insensitive case OK

Kalai.455: Hyper-optimistic conjecture

Tao.460: Connections with ergodic approach

Tao: A reading seminar on DHJ (600-699)

Tao.249: [math]\displaystyle{ \overline{c}^\mu_0 = 1 }[/math], [math]\displaystyle{ \overline{c}^\mu_1 = 2 }[/math], [math]\displaystyle{ \overline{c}^\mu_2 = 4 }[/math]

Dyer.254: [math]\displaystyle{ \overline{c}^\mu_3 = 6 }[/math]

Feb 12 Wiki set up O'Donnell.476: Fourier-analytic Sperner computations

McCutcheon.480: Strong Roth theorem proposed

Jakobsen.257: [math]\displaystyle{ \overline{c}^\mu_4 = 9 }[/math]

Jakobsen.258: [math]\displaystyle{ \overline{c}^\mu_5 = 12 }[/math]

Peake.262: Extremisers for [math]\displaystyle{ c_4 }[/math]

Feb 13 Gowers: Possible proof strategies (500-599) McCutcheon.505: IP uniformity norms?

Tao.614: Carlson-Simpson not needed for stationarity

Tao: Bounds for first few DHJ numbers (700-799)
Feb 14 Gowers.496: Equal slices implies uniform McCutcheon.508: Ergodic proof strategy

Tao.618: More randomness needed to invert maps

O'Donnell.622: [math]\displaystyle{ [3]^n }[/math] should already provide enough randomness

Tao.510: Finitary analogue of stationarity

Sauvaget: A proof that [math]\displaystyle{ c_5=154 }[/math]?
Feb 15 Tao.498: Uniform implies equal slices

Tao.514: DHJ(2.6) proposed

McCutcheon.518: Ramsey proof of DHJ(2.6)

Sauvaget: A new strategy for computing [math]\displaystyle{ c_n }[/math]

Markström.706: Integer program, [math]\displaystyle{ c_5=150 }[/math]

Cantwell.708: [math]\displaystyle{ c_6=450 }[/math]

Tao.715: Genetic algorithm?

Feb 16 Tao.524: Simplification of proof

O'Donnell 529: Ramsey-free proof of DHJ(2.6)?

McCutcheon.533: Ramsey theory incompatible with symmetry

Tao.626: Ramsey theorems summarised Peake.730: [math]\displaystyle{ c_5 }[/math] extremisers

Tao.731: Human proof that [math]\displaystyle{ c_5 \leq 152 }[/math]; [math]\displaystyle{ c_7 \leq 1348 }[/math]

Feb 17 Tao.536: Fourier-analytic proof of DHJ(2.6)

McCutcheon.541: "Cave-man" proof of DHJ(2.6)

Chua.736: [math]\displaystyle{ c'_5 \geq 124 }[/math]

Peake.738: Connection between Moser(3) and sphere packing

Feb 18 Gowers.544: Corners(1,3)?

Gowers.545: Fourier computations on equal-slices measure begin

Markström.739: [math]\displaystyle{ c_6 }[/math] extremiser unique
Feb 19 Markström.742: 43-point Moser sets in [math]\displaystyle{ [3]^4 }[/math] listed

Peake.743: 43-point sets analysed

Cantwell.744: [math]\displaystyle{ c'_5 \leq 128 }[/math]

Tao.745: 50+ point line-free sets in [math]\displaystyle{ [3]^4 }[/math] listed

Feb 20 Vipulniak: [1] Solymosi.563: Moser(6) implies DHJ(3) Tao.630: IP convergence lemma Markström.747: 42-point Moser sets listed

Peake.751: Human proof of [math]\displaystyle{ c_5 \leq 151 }[/math]

Feb 21 Gowers: To thread or not to thread Gowers.580: Extreme localisation + density increment = DHJ(3)?

Gowers.581: Multidimensional Sperner

Gowers.582: Use Ajtai-Szemeredi argument to get density increment?

Tao.631: Informal combinatorial translation of ergodic DHJ(2)

Tao.578: Finitary ergodic proof of DHJ(2) proposed

Tao.632: Special cases of DHJ(3) translated

Peake.752: Human proof of [math]\displaystyle{ c_5=150 }[/math], [math]\displaystyle{ c_6=450 }[/math]

Tao.753: Sequences submitted to OEIS

Feb 22
Feb 23 McCutcheon.593: DHJ(2.7)

O'Donnell.596: Fourier-analytic proof of DHJ(2)

Gowers: Brief review of polymath1 (800-849)

O'Donnell.800: Fourier-analytic + density increment proof of DHJ(2)

Markström.463: 42-point Moser sets analysed

Tao.464: [math]\displaystyle{ c'_5 \leq 127 }[/math]

Chua.766: 3D Moser sets with 222 have [math]\displaystyle{ \leq 13 }[/math] points

Tao.767: 4D Moser sets with 2222 have [math]\displaystyle{ \leq 39 }[/math] points

Feb 24 Tao.809.2: Low-influence implies Sperner-positivity

Gowers.812: Fourier vs physical positivity

O'Donnell.814: [math]\displaystyle{ \ell_1 }[/math], [math]\displaystyle{ \ell_2 }[/math] equivalence

Feb 25 Gowers.820: Density increment on complexity 1 set Tao.818: Finitary ergodic sketch of DHJ(3)

O'Donnell.821: Simplified Fourier proof of DHJ(2) structure theorem

Cantwell.769: 5D Moser sets with 2222* have [math]\displaystyle{ \leq 124 }[/math] points

Peake.771: Exotic 43-point Moser sets described

Feb 26 Gowers.824: Complexity 1 + Ajtai-Szemeredi DHJ(3) sketch
Feb 27 Tao.826: Non-Fourier proof of DHJ(2) structure theorem

Gowers.828: Does correlation with 1-set imply density increment?

Tao.828.4: Energy increment proof for Gowers Q?

McCutcheon.832.2: Use dense fibres to answer Gowers Q? Elsholtz.775: Human proof of 2222* result

Cantwell.776: [math]\displaystyle{ c'_5 \leq 126 }[/math]

Feb 28 Tao.834: Use pullbacks for Gowers Q?

Gowers.835: Pullbacks don't work

O'Donnell 839: Increment-free Fourier proof of DHJ(2)

Tao.837.2: Dense fibres argument for Gowers Q Markström.779: 41-point Moser sets listed
Mar 1 Cantwell.782, Peake.784: [math]\displaystyle{ c'_5 \leq 125 }[/math]
Mar 2 Gowers: DHJ 851-899