Side Proof 9

From Polymath Wiki
Revision as of 19:21, 21 June 2015 by Tomtom2357 (talk | contribs) (Created page with "This page will handle one of the long cases in the Human proof that completely multiplicative sequences have discrepancy greater than 3, so that the page can be shorter and no...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

This page will handle one of the long cases in the Human proof that completely multiplicative sequences have discrepancy greater than 3, so that the page can be shorter and not have so many long sections. Specifically, this page will take care of the case where we assume: f(2)=f(11)=f(17)=f(29)=1, f(7)=f(13)=f(23)=-1.

Proof

s(36) = 3+f(31), so f(31)=-1. f[185,190] = 5-f(37).

s(44) = 4+f(41)+f(43), so f(41)=f(43)=-1.

We have two equations:

1) f[423,438] = 7-f(61)-f(71)-f(73)+f(107)+f(109)+f(431)+f(433) <= 4

2) s(72) = 5+f(59)+f(61)+f(67)+f(71)+f(73) <= 2

(1)+(2)-12: f(59)+f(67)+f(107)+f(109)+f(431)+f(433) <= -6

Therefore, f(59)=f(67)=f(107)=f(109)=f(431)=f(433)=-1. However, now f[107,112] = -6, which forces the discrepancy above 3. Therefore, f(37)=-1.