Lattice approach

From Polymath Wiki
Revision as of 02:10, 14 March 2016 by TobiasFritz (talk | contribs) (added some key parts of Wójcik's argument)
Jump to navigationJump to search

This is an approach to proving (weak) FUNC in the lattice formulation by distinguishing various regimes of lattices. Let [math]\displaystyle{ \mathcal{A} }[/math] be a finite lattice with set of join-irreducibles [math]\displaystyle{ \mathcal{J} }[/math] of cardinality [math]\displaystyle{ |\mathcal{J}|=j }[/math], and write [math]\displaystyle{ n=|\mathcal{A}| }[/math]. Write [math]\displaystyle{ m }[/math] for the maximum of [math]\displaystyle{ n - \uparrow\{J\} }[/math] over all join-irreducibles [math]\displaystyle{ J }[/math]; the goal is to lower bound [math]\displaystyle{ m }[/math] in terms of [math]\displaystyle{ n }[/math], and FUNC claims that [math]\displaystyle{ m\geq n/2 }[/math].

General observations

Lemma: If there is a constant [math]\displaystyle{ C\gt 0 }[/math] such that (weak) FUNC holds for all lattices with [math]\displaystyle{ |\mathcal{J}| \leq C|\mathcal{A}| }[/math], then it holds in general.

Proof: For given [math]\displaystyle{ \mathcal{A} }[/math], consider the [math]\displaystyle{ k }[/math]-th cartesian powers [math]\displaystyle{ \mathcal{A}^k }[/math]. (Weak) FUNC holds for any one of these if and only if it holds for [math]\displaystyle{ \mathcal{A} }[/math] itself. Since the number of join-irreducibles of [math]\displaystyle{ \mathcal{A}^k }[/math] is [math]\displaystyle{ k|\mathcal{J}| }[/math], which grows much slower than [math]\displaystyle{ |\mathcal{A}|^k }[/math], the claim follows by choosing [math]\displaystyle{ k }[/math] large enough. QED.

Reduction to atomistic lattices

Lemma: (Weak) FUNC holds for all lattices if and only if it holds for all atomistic lattices.

Proof: Let [math]\displaystyle{ \mathcal{J} }[/math] be the set of join-irreducibles of [math]\displaystyle{ \mathcal{A} }[/math]. Define [math]\displaystyle{ \hat{\mathcal{A}} }[/math] as being equal to [math]\displaystyle{ \mathcal{A} }[/math] together with two additional elements [math]\displaystyle{ A_J,A'_J }[/math] for every [math]\displaystyle{ J\in\mathcal{J} }[/math], ordered such that [math]\displaystyle{ 0\leq A_J,A'_J\leq J }[/math], and incomparable to all other elements. Then [math]\displaystyle{ \hat{\mathcal{A}} }[/math] is again a lattice: the join of any two 'old' elements is as before; the join of [math]\displaystyle{ A_J }[/math] with some [math]\displaystyle{ K\in\mathcal{A} }[/math] is [math]\displaystyle{ J\vee K }[/math], and similarly the join of [math]\displaystyle{ A_J }[/math] with [math]\displaystyle{ A_K }[/math] is [math]\displaystyle{ J\vee K }[/math]; and crucially, [math]\displaystyle{ A_J\vee A'_J = J }[/math]. So by virtue of being a finite join-semilattice, [math]\displaystyle{ \hat{\mathcal{A}} }[/math] is automatically a lattice. It is atomistic by construction.

Concerning abundances, we have [math]\displaystyle{ |\hat{\mathcal{A}}| = |\mathcal{A}| + 2|\mathcal{J}| }[/math], and assume the existence of an atom [math]\displaystyle{ A_J }[/math] such that [math]\displaystyle{ |\hat{\mathcal{A}_{A_J}}| \leq c |\hat{\mathcal{A}}| }[/math]. This implies [math]\displaystyle{ |\mathcal{A}_J| = |\hat{\mathcal{A}_{A_J}}| - 1 \lt c(|\mathcal{A} + 2|\mathcal{J}|) }[/math]. The conclusion follows since the previous lemma allows us to assume the ratio [math]\displaystyle{ |\mathcal{J}|/|\mathcal{A}| }[/math] to be arbitrarily small. QED.

Hence we assume wlog that [math]\displaystyle{ \mathcal{A} }[/math] is atomistic.

Easy lattice classes

Proposition: If atomistic [math]\displaystyle{ \mathcal{A} }[/math] has a prime element, then [math]\displaystyle{ \mathcal{A} }[/math] satisfies FUNC.

Proof: Let [math]\displaystyle{ P }[/math] be the prime element. The claim follows if the map [math]\displaystyle{ \mathcal{A}\setminus\uparrow\{P\}\to \uparrow\{P\} }[/math] given by [math]\displaystyle{ A\mapsto A\vee P }[/math] is surjective. Write any given [math]\displaystyle{ B\in\uparrow\{P\} }[/math] as a join of join-irreducibles. Since [math]\displaystyle{ P }[/math] is prime, [math]\displaystyle{ P }[/math] must be below one of these join-irreducibles; but by atomicity, such a join-irreducible must be equal to [math]\displaystyle{ P }[/math]. Again by atomicity, the remaining factors are not in [math]\displaystyle{ \uparrow\{P\} }[/math], and hence neither is their join. This join is the desired preimage of [math]\displaystyle{ B }[/math] under [math]\displaystyle{ A\mapsto A\vee P }[/math]. QED.

Proposition (Poonen): If every downset [math]\displaystyle{ \downarrow\{A\} }[/math] is complemented, then [math]\displaystyle{ \mathcal{A} }[/math] satisfies FUNC.

Proof: In this case, any join-irreducible [math]\displaystyle{ J }[/math] is rare, since the map [math]\displaystyle{ \mathcal{A}\setminus\uparrow\{J\}\to\uparrow\{J\} }[/math] given by [math]\displaystyle{ A\mapsto A\vee J }[/math] is surjective: the complement of [math]\displaystyle{ J }[/math] in [math]\displaystyle{ \downarrow\{B\} }[/math] is a preimage of [math]\displaystyle{ B\in\uparrow\{J\} }[/math]. QED.

Knill's argument in lattice terms

The following is a lattice-theoretic formulation of a small tightening of Knill's argument.

Proposition: Let [math]\displaystyle{ \mathcal{J}'\subseteq\mathcal{A} }[/math] be a set of join-irreducibles with [math]\displaystyle{ \bigvee \mathcal{J}' = 1 }[/math] and minimal with this property. Then some member of [math]\displaystyle{ \mathcal{J}' }[/math] has abundance at most [math]\displaystyle{ 2^{|\mathcal{J}'|-1} + \frac{(|\mathcal{J}'|-1)(n-2^{|\mathcal{J}'|})}{|\mathcal{J}'|} }[/math].

Note that at the two extreme values [math]\displaystyle{ |\mathcal{J}'|=2 }[/math] or [math]\displaystyle{ |\mathcal{J}'|=\log_2(n) }[/math], this establishes an element of abundance at most [math]\displaystyle{ 1/2 }[/math]. Unless [math]\displaystyle{ |\mathcal{J}'| }[/math] is very close to the maximal value [math]\displaystyle{ \log_2(n) }[/math], the bound is only marginally better than Knill's original one, which is [math]\displaystyle{ n - \frac{n-1}{|\mathcal{J}'|} }[/math].

Proof: Let [math]\displaystyle{ \mathcal{B}_{\mathcal{J}'} }[/math] be the Boolean algebra of subsets of the set [math]\displaystyle{ \mathcal{J}' }[/math]. Consider the map [math]\displaystyle{ \phi:\mathcal{A}\to\mathcal{B}_{\mathcal{J}'} }[/math] given by [math]\displaystyle{ \phi(A):=\{J\in \mathcal{J}'\:|\: J\leq A\} }[/math]. We claim that [math]\displaystyle{ \phi }[/math] is surjective. Indeed, for every [math]\displaystyle{ \mathcal{I}\subseteq\mathcal{J}' }[/math] we have [math]\displaystyle{ \phi\left(\bigvee \mathcal{I}\right) = \mathcal{I} }[/math]; for if [math]\displaystyle{ \phi\left(\bigvee \mathcal{I} \right) }[/math] was larger, then [math]\displaystyle{ \mathcal{J}' }[/math] would not be minimal with [math]\displaystyle{ \bigvee \mathcal{J}' = 1 }[/math].

Now consider the weight function [math]\displaystyle{ w:\mathcal{B}_{\mathcal{J}'}\to\mathbb{N} }[/math] given by [math]\displaystyle{ w(\mathcal{I}) := |\phi^{-1}(\mathcal{I})| }[/math]. We know [math]\displaystyle{ w(\mathcal{I})\geq 1 }[/math] by surjectivity, and moreover [math]\displaystyle{ w(\mathcal{J}') = 1 }[/math] by the assumption on [math]\displaystyle{ \mathcal{J}' }[/math]. Since the abundance of each [math]\displaystyle{ J\in\mathcal{J}' }[/math] in [math]\displaystyle{ \mathcal{A} }[/math] coincides with its [math]\displaystyle{ w }[/math]-abundance in [math]\displaystyle{ \mathcal{B}_{\mathcal{J}'} }[/math], it is enough to derive a suitable bound on the [math]\displaystyle{ w }[/math]-abundance.

[math]\displaystyle{ w\geq 1 }[/math] already fixes the distribution of a total weight of [math]\displaystyle{ 2^{|\mathcal{J}'|} }[/math]. For the remaining weight of [math]\displaystyle{ n-2^{|\mathcal{J}'|} }[/math], the worst-case scenario is that it is completely concentrated on the coatoms of [math]\displaystyle{ \mathcal{B}_{\mathcal{J}'} }[/math]. (And this can indeed happen.) Since every [math]\displaystyle{ J\in\mathcal{J}' }[/math] is contained in all but one coatoms, the pigeonhole principle guarantees that there is [math]\displaystyle{ J }[/math] whose abundance with respect to the remaining weight is at most [math]\displaystyle{ \frac{(|\mathcal{J}'|-1)(n-2^{|\mathcal{J}'|})}{|\mathcal{J}'|} }[/math]. This means that its total abundance is at most [math]\displaystyle{ 2^{|\mathcal{J}'|-1} + \frac{(|\mathcal{J}'|-1)(n-2^{|\mathcal{J}'|})}{|\mathcal{J}'|} }[/math], as was to be shown.

Corollary: Suppose that [math]\displaystyle{ \mathcal{A} }[/math] contains a maximal chain of length [math]\displaystyle{ c }[/math]. Then there is a join-irreducible element of abundance at most [math]\displaystyle{ n - \frac{n-1}{c-1} }[/math].

Proof: If the maximal chain is [math]\displaystyle{ 0=A_1\subseteq A_2\subseteq\ldots\subseteq A_c = 1 }[/math], then write [math]\displaystyle{ A_{k+1} = A_k\lor J_k }[/math] for join-irreducible [math]\displaystyle{ J_k }[/math]. Then [math]\displaystyle{ \bigvee_k J_k = 1 }[/math], and choose a minimal subset of the [math]\displaystyle{ J_k }[/math]'s with this property.

Wójcik's argument

Wójcik's proof is based on considerations involving disjoint intervals. These can be generalized to the following:

Lemma: Let [math]\displaystyle{ A\leq B }[/math] in [math]\displaystyle{ \mathcal{A} }[/math]. Then [math]\displaystyle{ m\geq\frac{|\uparrow A| - |\uparrow B|}{\log_2|[A,B]|} }[/math].

For [math]\displaystyle{ A=0 }[/math] and [math]\displaystyle{ B=1 }[/math], this specializes to Knill's result.

Proof: Let [math]\displaystyle{ \mathcal{J}' }[/math] be a minimal set of join-irreducibles with [math]\displaystyle{ A \vee \bigvee \mathcal{J}' = B }[/math]. Since all the [math]\displaystyle{ A\vee\bigvee \mathcal{K} }[/math] must be distinct as [math]\displaystyle{ \mathcal{K}\subseteq\mathcal{J}' }[/math] varies by the minimality of [math]\displaystyle{ \mathcal{J}' }[/math], we have [math]\displaystyle{ |\mathcal{J}'|\leq \log_2 |[A,B]| }[/math]. On the other hand, [math]\displaystyle{ |\uparrow\{A\}|\leq |\uparrow\{B\}| + m|\mathcal{J}'| }[/math] by the union bound, since taking [math]\displaystyle{ -\vee J }[/math] for a join-irreducible [math]\displaystyle{ J }[/math] decreases the size of the upset by at most [math]\displaystyle{ m }[/math]. Combining these two inequalities results in the claim. QED.

Proposition: Let [math]\displaystyle{ [A_i,B_i] }[/math] be a collection of disjoint intervals that cover [math]\displaystyle{ \mathcal{A} }[/math]. Then [math]\displaystyle{ \sum_i 2^{\frac{|\uparrow A_i|-|\uparrow B_i|}{m}} \leq n }[/math].

For the single interval [math]\displaystyle{ [0,1] }[/math] this again recovers Knill's bound; while for covering [math]\displaystyle{ \mathcal{A} }[/math] by all the singleton intervals, one obtains the tight but tautological inequality [math]\displaystyle{ n\leq n }[/math].

Proof: Let the [math]\displaystyle{ \mathcal{J}'_i }[/math] be as in the previous proof. The arguments there show that [math]\displaystyle{ \sum_i 2^{\frac{|\uparrow A|-|\uparrow B|}{m}} \leq \sum_i 2^{|\mathcal{J}'_i|} \leq n }[/math].

Equal maximal chains

Another extreme situation is when all maximal chains have equal length, i.e. that [math]\displaystyle{ \mathcal{A} }[/math] satisfies the Jordan-Dedekind chain condition. In this case, [math]\displaystyle{ \mathcal{A} }[/math] is graded. We distinguish two subcases depending on the height [math]\displaystyle{ h }[/math] and the width [math]\displaystyle{ w }[/math]; since [math]\displaystyle{ (h-1)(w-1)\geq n-1 }[/math], they can't both be too small. Using the JD chain condition, do arguments along the lines of Dilworth's theorem or Mirsky's theorem give more information?

Case a: large height

The height of [math]\displaystyle{ \mathcal{A} }[/math] can be at most [math]\displaystyle{ h=j+1 }[/math]. If this value is reached, then [math]\displaystyle{ \mathcal{A} }[/math] has a prime element by the dual of Theorem 15 in this paper, and therefore we can assume [math]\displaystyle{ h\leq j }[/math].

Case b: large width

In this case, one can try to choose a large maximal antichain and a join-irreducible element [math]\displaystyle{ x }[/math] such that [math]\displaystyle{ \mathcal{A}_x }[/math] contains as few elements of the antichain as possible.