Linear norm

From Polymath Wiki
Revision as of 13:36, 21 December 2017 by Teorth (talk | contribs) (→‎Applications)
Jump to navigationJump to search
The printable version is no longer supported and may have rendering errors. Please update your browser bookmarks and please use the default browser print function instead.

This is the wiki page for understanding seminorms of linear growth on a group [math]\displaystyle{ G }[/math] (such as the free group on two generators). These are functions [math]\displaystyle{ \| \|: G \to [0,+\infty) }[/math] that obey the triangle inequality

[math]\displaystyle{ \|xy\| \leq \|x\| + \|y\| \quad (1) }[/math]

and the linear growth condition

[math]\displaystyle{ \|x^n \| = |n| \|x\| \quad (2) }[/math]

for all [math]\displaystyle{ x,y \in G }[/math] and [math]\displaystyle{ n \in {\bf Z} }[/math].

We use the usual group theory notations [math]\displaystyle{ x^y := yxy^{-1} }[/math] and [math]\displaystyle{ [x,y] := xyx^{-1}y^{-1} }[/math].

Threads

Key lemmas

Henceforth we assume we have a seminorm [math]\displaystyle{ \| \| }[/math] of linear growth. The letters [math]\displaystyle{ s,t,x,y,z,w }[/math] are always understood to be in [math]\displaystyle{ G }[/math], and [math]\displaystyle{ i,j,n,m }[/math] are always understood to be integers.

From (2) we of course have

[math]\displaystyle{ \|x^{-1} \| = \| x\| \quad (3) }[/math]

Lemma 1. If [math]\displaystyle{ x }[/math] is conjugate to [math]\displaystyle{ y }[/math], then [math]\displaystyle{ \|x\| = \|y\| }[/math].

Proof. By hypothesis, [math]\displaystyle{ x = zyz^{-1} }[/math] for some [math]\displaystyle{ z }[/math], thus [math]\displaystyle{ x^n = z y^n z^{-1} }[/math], hence by the triangle inequality

[math]\displaystyle{ n \|x\| = \|x^n \| \leq \|z\| + n \|y\| + \|z^{-1} \| }[/math]

for any [math]\displaystyle{ n \geq 1 }[/math]. Dividing by [math]\displaystyle{ n }[/math] and taking limits we conclude that [math]\displaystyle{ \|x\| \leq \|y\| }[/math]. Similarly [math]\displaystyle{ \|y\| \leq \|x\| }[/math], giving the claim. [math]\displaystyle{ \Box }[/math]

An equivalent form of the lemma is that

[math]\displaystyle{ \|xy\| = \|yx\| \quad (4). }[/math]

We can generalise Lemma 1:

Lemma 2. If [math]\displaystyle{ x^i }[/math] is conjugate to [math]\displaystyle{ wy }[/math] and [math]\displaystyle{ x^j }[/math] is conjugate to [math]\displaystyle{ zw^{-1} }[/math], then [math]\displaystyle{ \|x\| \leq \frac{1}{|i+j|} ( \|w\| + \|z\| ) }[/math].

Proof. By hypothesis, [math]\displaystyle{ x^i = s wy s^{-1} }[/math] and [math]\displaystyle{ x^j = t zw^{-1} t^{-1} }[/math] for some [math]\displaystyle{ s,t }[/math]. For any natural number [math]\displaystyle{ n }[/math], we then have

[math]\displaystyle{ x^{in} x^{jn} = s wy \dots wy s^{-1} t zw^{-1} \dots zw^{-1} t^{-1} }[/math]

where the terms [math]\displaystyle{ wy, zw }[/math] are each repeated [math]\displaystyle{ n }[/math] times. By Lemma 1, conjugation by [math]\displaystyle{ w }[/math] does not change the norm. From many applications of this and the triangle inequality, we conclude that

[math]\displaystyle{ |i+j| n \|x\| = \| x^{in} x^{jn} \| \leq \|s\| + n \|y\| + \|s^{-1} t\| + n \|z\| + \|t^{-1}\|. }[/math]

Dividing by [math]\displaystyle{ n }[/math] and sending [math]\displaystyle{ n \to \infty }[/math], we obtain the claim. [math]\displaystyle{ \Box }[/math]


Applications

Corollary 0. The eight commutators [math]\displaystyle{ [x^{\pm 1}, y^{\pm 1}], [y^{\pm 1}, x^{\pm 1}] }[/math] all have the same norm.

Proof. Each of these commutators is conjugate to either [math]\displaystyle{ [x,y] }[/math] or its inverse. [math]\displaystyle{ \Box }[/math]

Corollary 1. The function [math]\displaystyle{ n \mapsto \|x^n y\| }[/math] is convex in [math]\displaystyle{ n }[/math].

Proof. [math]\displaystyle{ x^n y }[/math] is conjugate to [math]\displaystyle{ x (x^{n-1} y) }[/math] and to [math]\displaystyle{ (x^{n+1} y) x^{-1} }[/math], hence by Lemma 2

[math]\displaystyle{ \| x^n y \| \leq \frac{1}{2} (\| x^{n-1} y \| + \| x^{n+1} y \|), }[/math]

giving the claim. [math]\displaystyle{ \Box }[/math]

Corollary 2. For any [math]\displaystyle{ k \geq 1 }[/math], one has

[math]\displaystyle{ \| [x,y] \| \leq \frac{1}{2k+2} (\| [x^{-1},y^{-1}]^k x^{-1} \| + \| [x,y]^k x \|). }[/math]

Thus for instance

[math]\displaystyle{ \| [x,y] \| \leq \frac{1}{4} (\| [x^{-1},y^{-1}] x^{-1} \| + \| [x,y] x \|). }[/math]

Proof. [math]\displaystyle{ [x,y]^{k+1} }[/math] is conjugate both to [math]\displaystyle{ x(y[x^{-1},y^{-1}]^k x^{-1}y^{-1}) }[/math] and to [math]\displaystyle{ (y^{-1} [x,y]^k xy)x^{-1} }[/math], hence by Lemma 2

[math]\displaystyle{ \| [x,y] \| \leq \frac{1}{2k+2} ( \| y[x^{-1},y^{-1}]^k x^{-1} \| + \| (y^{-1} [x,y]^k xy)x^{-1}\|) }[/math]

giving the claim by Lemma 1. [math]\displaystyle{ \Box }[/math]

Corollary 3. One has

[math]\displaystyle{ \|[x,y]^2 x\| \leq \frac{1}{2} ( \| x y^{-1} [x,y] \| + \| xy [x,y] \| ).$ '''Proof'''. \lt math\gt [x,y]^2 x }[/math] is conjugate both to [math]\displaystyle{ y (x^{-1} y^{-1} [x,y] x^2) }[/math] and to [math]\displaystyle{ (x[x,y]xyx^{-1}) y^{-1} }[/math], hence by Lemma 2
[math]\displaystyle{ \displaystyle \|[x,y]^2 x\| \leq \frac{1}{2} ( \|x^{-1} y^{-1} [x,y] x^2\| + \|x[x,y]xyx^{-1}\|) }[/math]

giving the claim by Lemma 1. [math]\displaystyle{ \Box }[/math]

Corollary 4. One has

[math]\displaystyle{ \| [x,y] x\| \leq \frac{1}{4} ( \| x^2 y [x,y] \| + \| xy^{-1} x [x,y] \| ). }[/math]

Proof [math]\displaystyle{ ([x,y] x)^2 }[/math] is conjugate both to [math]\displaystyle{ y^{-1} (x [x,y] x^2 y x^{-1}) }[/math] and to [math]\displaystyle{ (x^{-1} y^{-1} x [x,y] x^2) y }[/math], hence

[math]\displaystyle{ \| [x,y] x\| \leq \frac{1}{4} ( \| x [x,y] x^2 y x^{-1} \| + \| x^{-1} y^{-1} x [x,y] x^2 \| ), }[/math]

giving the claim by Lemma 1. [math]\displaystyle{ \Box }[/math]

Iterations