Polymath15 test problem

From Polymath Wiki
Jump to navigationJump to search

We are initially focusing attention on the following

Test problem For [math]\displaystyle{ t=y=0.4 }[/math], can one prove that [math]\displaystyle{ H_t(x+iy) \neq 0 }[/math] for all [math]\displaystyle{ x \geq 0 }[/math]?

If we can show this, it is likely that (with the additional use of the argument principle, and some further information on the behaviour of [math]\displaystyle{ H_t(x+iy) }[/math] at [math]\displaystyle{ y=0.4 }[/math]) that one can show that [math]\displaystyle{ H_t(x+iy) \neq 0 }[/math] for all [math]\displaystyle{ y \geq 0.4 }[/math] as well. This would give a new upper bound

[math]\displaystyle{ \Lambda \leq 0.4 + \frac{1}{2} (0.4)^2 = 0.96 }[/math]

for the de Bruijn-Newman constant.

For very small values of [math]\displaystyle{ x }[/math] we expect to be able to establish this by direct calculation of [math]\displaystyle{ H_t(x+iy) }[/math]. For medium or large values, the strategy is to use a suitable approximation

[math]\displaystyle{ H_t(x+iy) \approx A + B }[/math]

for some relatively easily computable quantities [math]\displaystyle{ A = A_t(x+iy), B = B_t(x+iy) }[/math] (it may possibly be necessary to use a refined approximation [math]\displaystyle{ A+B-C }[/math] instead). The quantity [math]\displaystyle{ B }[/math] contains a non-zero main term [math]\displaystyle{ B_0 }[/math] which is expected to roughly dominate. To show [math]\displaystyle{ H_t(x+iy) }[/math] is non-zero, it would suffice to show that

[math]\displaystyle{ \frac{|H_t - A - B|}{|B_0|} \lt \frac{|A + B|}{|B_0|}. }[/math]

Thus one will seek upper bounds on the error [math]\displaystyle{ \frac{|H_t - A - B|}{|B_0|} }[/math] and lower bounds on [math]\displaystyle{ \frac{|A+B|}{|B_0|} }[/math] for various ranges of [math]\displaystyle{ x }[/math]. Numerically it seems that the RHS stays above 0.4 as soon as [math]\displaystyle{ x }[/math] is moderately large, while the LHS stays below 0.1, which looks promising for the rigorous arguments.

Choices of approximation

There are a number of slightly different approximations we have used in previous discussion. The first approximation was

[math]\displaystyle{ A := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-s/2} \Gamma(s/2) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{s+4}{2\pi n^2})}{n^s} }[/math]
[math]\displaystyle{ B := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-(1-s)/2} \Gamma((1-s)/2) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{5-s}{2\pi n^2})}{n^{1-s}} }[/math]
[math]\displaystyle{ B_0 := \frac{1}{8} \frac{s(s-1)}{2} \pi^{-(1-s)/2} \Gamma((1-s)/2) \exp( \frac{t}{16} \log^2 \frac{5-s}{2\pi} ) }[/math]
[math]\displaystyle{ s := \frac{1-y+ix}{2} }[/math]
[math]\displaystyle{ N := \lfloor \frac{\mathrm{Im} s}{2\pi} \rfloor = \lfloor \frac{x}{4\pi} \rfloor. }[/math]

This was modified slightly to

[math]\displaystyle{ A' := \frac{2}{8} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s+4}{2}-\frac{1}{2}) \log \frac{s+4}{2} - \frac{s+4}{2}) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{s+4}{2\pi n^2})}{n^s} }[/math]
[math]\displaystyle{ B' := \frac{2}{8} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{5-s}{2}-\frac{1}{2}) \log \frac{5-s}{2} - \frac{5-s}{2}) \sum_{n=1}^N \frac{\exp(\frac{t}{16} \log^2 \frac{5-s}{2\pi n^2})}{n^{1-s}} }[/math]
[math]\displaystyle{ B'_0 := \frac{2}{8} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{5-s}{2}-\frac{1}{2}) \log \frac{5-s}{2} - \frac{5-s}{2}) \exp( \frac{t}{16} \log^2 \frac{5-s}{2\pi} ) }[/math]
[math]\displaystyle{ s := \frac{1-y+ix}{2} }[/math]
[math]\displaystyle{ N := \lfloor \frac{\mathrm{Im} s}{2\pi} \rfloor = \lfloor \frac{x}{4\pi} \rfloor. }[/math]

In Effective bounds on H_t - second approach, a more refined approximation was introduced:

[math]\displaystyle{ A^{eff} := \frac{1}{8} \exp( \frac{t}{4} \alpha_1(\frac{1-y+ix}{2})^2 ) H_{0,1}(\frac{1-y+ix}{2}) \sum_{n=1}^N \frac{1}{n^{\frac{1-y+ix}{2} + \frac{t \alpha_1(\frac{1-y+ix}{2})}{2} - \frac{t}{4} \log n}} }[/math]
[math]\displaystyle{ B^{eff} := \frac{1}{8} \exp( \frac{t}{4} \overline{\alpha_1(\frac{1+y+ix}{2})}^2 ) \overline{H_{0,1}(\frac{1+y+ix}{2})} \sum_{n=1}^N \frac{1}{n^{\frac{1+y+ix}{2} + \frac{t \overline{\alpha_1(\frac{1+y+ix}{2})}}{2} - \frac{t}{4} \log n}} }[/math]
[math]\displaystyle{ B^{eff} := \frac{1}{8} \exp( \frac{t}{4} \overline{\alpha_1(\frac{1+y+ix}{2})}^2 ) \overline{H_{0,1}(\frac{1+y+ix}{2})} }[/math]
[math]\displaystyle{ H_{0,1}(s) := \frac{s (s-1)}{2} \pi^{-s/2} \sqrt{2\pi} \exp( (\frac{s}{2} - \frac{1}{2}) \log \frac{s}{2} - \frac{s}{2} ) }[/math]
[math]\displaystyle{ \alpha_1(s) := \frac{1}{2s} + \frac{1}{s-1} + \frac{1}{2} \log \frac{s}{2\pi} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{ \frac{T'}{2\pi}} \rfloor }[/math]
[math]\displaystyle{ T' := \frac{x}{2} - \frac{\pi t}{8}. }[/math]

Finally, a simplified approximation is

[math]\displaystyle{ A^{toy} := B^{toy}_0 \exp(i (\frac{x}{2} \log \frac{x}{4\pi} - \frac{x}{2} + \frac{\pi}{4})) N^{-y} \sum_{n=1}^N \frac{1}{n^{\frac{1-y+ix}{2} + \frac{t}{4} \log \frac{N^2}{n}}} }[/math]
[math]\displaystyle{ B^{toy} := B^{toy}_0 \sum_{n=1}^N \frac{1}{n^{\frac{1+y-ix}{2} + \frac{t}{4} \log \frac{N^2}{n}}} }[/math]
[math]\displaystyle{ B^{toy}_0 := \sqrt{2} \pi^2 N^{\frac{7+y}{2}} \exp( -i (\frac{x}{4} \log \frac{x}{4\pi} - \frac{x}{4} - \frac{7\pi}{8}) ) e^{-\pi x/8} }[/math]
[math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi}} \rfloor. }[/math]

insert table here comparing these approximations to each other and to H_t for various values'

Controlling |A+B|/|B_0|

...

Controlling |H_t-A-B|/|B_0|

...