Zero-free regions

From Polymath Wiki
Revision as of 10:28, 29 March 2018 by Teorth (talk | contribs) (Created page with "The table below lists various regions of the <math>(t,y,x)</math> parameter space where <math>H_t(x+iy)</math> is known to be non-zero. In some cases the parameter :<math> N...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter

[math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]

is used.


Date [math]\displaystyle{ t }[/math] [math]\displaystyle{ y }[/math] [math]\displaystyle{ x }[/math] From Method Comments
1950 [math]\displaystyle{ t \geq 0 }[/math] [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] Any De Bruijn Theorem 13 of de Bruijn
2009 [math]\displaystyle{ t \gt 0 }[/math] [math]\displaystyle{ y \gt 0 }[/math] [math]\displaystyle{ x \geq C(t) }[/math] Ki-Kim-Lee Theorem 1.3 of Ki-Kim-Lee [math]\displaystyle{ C(t) }[/math] is not given explicitly.
Mar 7 2018 0.4 0.4 [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) Tao Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math]
Mar 10 2018 0.4 0.4 [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) KM Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) KM Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms
Mar 11 2018 0.4 0.4 [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) Rudolph & [1] Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms