Zero-free regions
From Polymath Wiki
The table below lists various regions of the [math]\displaystyle{ (t,y,x) }[/math] parameter space where [math]\displaystyle{ H_t(x+iy) }[/math] is known to be non-zero. In some cases the parameter
- [math]\displaystyle{ N := \lfloor \sqrt{\frac{x}{4\pi} + \frac{t}{16}} \rfloor }[/math]
is used.
Date | [math]\displaystyle{ t }[/math] | [math]\displaystyle{ y }[/math] | [math]\displaystyle{ x }[/math] | From | Method | Comments |
---|---|---|---|---|---|---|
1950 | [math]\displaystyle{ t \geq 0 }[/math] | [math]\displaystyle{ y \gt \sqrt{\max(1-2t,0)} }[/math] | Any | De Bruijn | Theorem 13 of de Bruijn | |
2009 | [math]\displaystyle{ t \gt 0 }[/math] | [math]\displaystyle{ y \gt 0 }[/math] | [math]\displaystyle{ x \geq C(t) }[/math] | Ki-Kim-Lee | Theorem 1.3 of Ki-Kim-Lee | [math]\displaystyle{ C(t) }[/math] is not given explicitly. |
Mar 7 2018 | 0.4 | 0.4 | [math]\displaystyle{ N \geq 2000 }[/math] ([math]\displaystyle{ x \geq 5.03 \times 10^7 }[/math]) | Tao | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and analytic upper bounds on error terms | Can be extended to the range [math]\displaystyle{ 0.4 \leq y \leq 0.45 }[/math] |
Mar 10 2018 | 0.4 | 0.4 | [math]\displaystyle{ 151 \leq N \leq 300 }[/math] ([math]\displaystyle{ 2.87 \times 10^5 \leq x \leq 1.13 \times 10^6 }[/math]) | KM | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 300 \leq N \leq 2000 }[/math] ([math]\displaystyle{ 1.13 \times 10^6 \leq x \leq 5.03 \times 10^7 }[/math]) | KM | Analytic lower bounds on [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms | |
Mar 11 2018 | 0.4 | 0.4 | [math]\displaystyle{ 20 \leq N \leq 150 }[/math] ([math]\displaystyle{ 5026 \leq x \leq 2.87 \times 10^5 }[/math]) | Rudolph & [1] | Mesh evaluation of [math]\displaystyle{ A^{eff}+B^{eff} / B^{eff}_0 }[/math] and upper bounds on error terms |