Ajtai-Szemerédi's proof of the corners theorem

From Polymath Wiki
Revision as of 07:14, 19 February 2009 by Gowers (talk | contribs)
Jump to navigationJump to search

The original paper of Ajtai and Szemerédi does not seem to be available online, but here you can find a quantitative version of their argument due to Van Vu.

[Cleanup of the remaining paragraphs needed.]

Ajtai and Szemerédi found a clever proof of the corners theorem that used Szemerédi’s theorem as a lemma. This gives us a direction to explore that we have hardly touched on. Very roughly, to prove the corners theorem you first use an averaging argument to find a dense diagonal (that is, subset of the form x+y=r that contains many points of your set A). For any two such points (x,r-x) and (y,r-y) you know that the point (x,r-y) does not lie in A (if A is corner free), which gives you some kind of non-quasirandomness. (The Cartesian semi-product arguments discussed in the 400s thread are very similar to this observation.) Indeed, it allows you to find a large Cartesian product [math]\displaystyle{ X\times Y }[/math] in which A is a bit too dense. In order to exploit this, Ajtai and Szemerédi used Szemerédi’s theorem to find long arithmetic progressions [math]\displaystyle{ P\subset X }[/math] and [math]\displaystyle{ Q\subset Y }[/math] of the same common difference such that A has a density increment in [math]\displaystyle{ P\times Q }[/math]. (I may have misremembered, but I think this must have been roughly what they did.) So we could think about what the analogue would be in the DHJ setting. Presumably it would be some kind of multidimensional Sperner statement of sufficient depth to imply Szemerédi’s theorem. A naive suggestion would be that in a dense subset of [math]\displaystyle{ [2]^n }[/math] you can find a large-dimensional combinatorial subspace in which all the variable sets have the same size. If you apply this to a union of layers, then you find an arithmetic progression of layer-cardinalities. But this feels rather artificial, so here’s a question we could think about.

Question 1. Can anyone think what the right common generalization of Szemerédi’s theorem and Sperner’s theorem ought to be? (Sperner’s theorem itself would correspond to the case of progressions of length 2.)