Ajtai-Szemerédi's proof of the corners theorem
Introduction
Ajtai and Szemerédi proved the corners theorem with a clever use of three basic principles: the density-increment strategy, which allowed them to assume that the set A was of density almost [math]\displaystyle{ \delta }[/math] in almost all subgrids; averaging arguments, which implied that any dense structured set in which A was sparse must be compensated for by a structured set in which it was of increased density, and Szemerédi's theorem, which allowed them to pass from dense subsets of [n] to long arithmetic progressions. Their original paper does not seem to be available online, but here you can find a quantitative version of their argument due to Van Vu. On this page, we give a detailed sketch of the argument: the aim is to present the key ideas in enough detail that the reader who wishes to can go away and make it fully precise.
Statement of the theorem and some basic definitions
For every [math]\displaystyle{ \delta\gt 0 }[/math] there exists n such that every subset [math]\displaystyle{ A\subset [n]^2 }[/math] of density at least [math]\displaystyle{ \delta }[/math] (i.e., of cardinality at least [math]\displaystyle{ \delta n^2 }[/math]) contains three points of the form (x,y), (x+d,y) and (x,y+d) with [math]\displaystyle{ d\gt 0. }[/math]
Definition. A grid of side m is a Cartesian product [math]\displaystyle{ P\times Q, }[/math] where P and Q are arithmetic progressions of length m with the same common difference.
First step: A is dense on almost all grids
This is a very standard move in density-increment arguments. We are trying to do an iteration in which we pass to a subgrid where A has increased density. Suppose we aim for a density increase from [math]\displaystyle{ \delta }[/math] to [math]\displaystyle{ \delta+\eta. }[/math]
To be continued.
Second step: find a large set of "full" vertical lines
An old blog comment that used to be the main article
Ajtai and Szemerédi found a clever proof of the corners theorem that used Szemerédi’s theorem as a lemma. This gives us a direction to explore that we have hardly touched on. Very roughly, to prove the corners theorem you first use an averaging argument to find a dense diagonal (that is, subset of the form x+y=r that contains many points of your set A). For any two such points (x,r-x) and (y,r-y) you know that the point (x,r-y) does not lie in A (if A is corner free), which gives you some kind of non-quasirandomness. (The Cartesian semi-product arguments discussed in the 400s thread are very similar to this observation.) Indeed, it allows you to find a large Cartesian product [math]\displaystyle{ X\times Y }[/math] in which A is a bit too dense. In order to exploit this, Ajtai and Szemerédi used Szemerédi’s theorem to find long arithmetic progressions [math]\displaystyle{ P\subset X }[/math] and [math]\displaystyle{ Q\subset Y }[/math] of the same common difference such that A has a density increment in [math]\displaystyle{ P\times Q }[/math]. (I may have misremembered, but I think this must have been roughly what they did.) So we could think about what the analogue would be in the DHJ setting. Presumably it would be some kind of multidimensional Sperner statement of sufficient depth to imply Szemerédi’s theorem. A naive suggestion would be that in a dense subset of [math]\displaystyle{ [2]^n }[/math] you can find a large-dimensional combinatorial subspace in which all the variable sets have the same size. If you apply this to a union of layers, then you find an arithmetic progression of layer-cardinalities. But this feels rather artificial, so here’s a question we could think about.
Question 1. Can anyone think what the right common generalization of Szemerédi’s theorem and Sperner’s theorem ought to be? (Sperner’s theorem itself would correspond to the case of progressions of length 2.)