A second outline of a density-increment argument
Introduction
One of the proof strategies we have considered seriously is the density-increment method. The idea here is to prove that if [math]\displaystyle{ \mathcal{A} }[/math] is a subset of [math]\displaystyle{ [3]^n }[/math] of density [math]\displaystyle{ \delta }[/math] with no combinatorial line then there is a combinatorial subspace S of dimension tending to infinity with n such that the density of [math]\displaystyle{ \mathcal{A} }[/math] inside S is larger than [math]\displaystyle{ \delta }[/math] by an amount that depends on [math]\displaystyle{ \delta }[/math] only. If we can prove such a result, then we can drop down to S and repeat the argument. If the initial dimension n is large enough, then we push the density up to 1 before we run out of dimensions, and thereby obtain a contradiction.
Notation and definitions
Let x be an element of [math]\displaystyle{ [3]^n. }[/math] Write [math]\displaystyle{ U(x),V(x) }[/math] and [math]\displaystyle{ W(x) }[/math] for the sets of i such that [math]\displaystyle{ x_i=1,2 }[/math] and 3, respectively. These are called the 1-set, the 2-set and the 3-set of x. The map [math]\displaystyle{ x\mapsto(U(x),V(x),W(x)) }[/math] is a one-to-one correspondence between [math]\displaystyle{ [3]^n }[/math] and the set of all triples [math]\displaystyle{ (U,V,W) }[/math] of sets that partition [math]\displaystyle{ [n]. }[/math] We shall use the notation x and also the notation [math]\displaystyle{ (U,V,W) }[/math] and will pass rapidly between them.
Let [math]\displaystyle{ \mathcal{U} }[/math] and [math]\displaystyle{ \mathcal{V} }[/math] be collections of subsets of [math]\displaystyle{ [n]. }[/math] We shall write [math]\displaystyle{ \mathcal{U}\otimes\mathcal{V} }[/math] for the collection of all sequences [math]\displaystyle{ x }[/math] such that [math]\displaystyle{ U(x)\in\mathcal{U} }[/math] and [math]\displaystyle{ V(x)\in\mathcal{V}. }[/math] A set of the form [math]\displaystyle{ \mathcal{U}\otimes\mathcal{V} }[/math] will be called a 12-set.
In general, if X is a finite set and A and B are subsets of X, we define the density of A in B to be [math]\displaystyle{ |A\cap B|/|B|. }[/math]