Side Proof 3

From Polymath Wiki
Revision as of 02:44, 21 May 2015 by Tomtom2357 (talk | contribs) (Created page with "This page will handle one of the long cases in the Human proof that completely multiplicative sequences have discrepancy greater than 3, so that the page can be shorter an...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

This page will handle one of the long cases in the Human proof that completely multiplicative sequences have discrepancy greater than 3, so that the page can be shorter and not have so many long sections. Specifically, this page will take care of the case where we assume: f(2)=f(7)=f(19)=f(23)=f(37)=f(43)=1, f(29)=f(31)=-1.

Proof

If we also assume that f(47) is also positive, then the discrepancy at 66 is equal to 5+f(53)+f(59)+f(61), so we have that f(53)=f(59)=f(61)=-1. Given this, we have that f[527,534]=5-f(89), so f(89)=1. But then f[169,178]=7+f(173), forcing the discrepancy to be greater than 3. Therefore f(47)=-1. Similarly, if f(61)=1, then f(53)=f(59)=-1, and the same problem occurs, so f(61)=-1. If f(59)=1, then f(53)=-1, and f[527,534]=7-f(89), which is impossible. Therefore f(59)=-1. The discrepancy up to 62 is -3+f(53), so f(53)=1. Now, since f[113,118]=-5+f(113), f(113)=1.

Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + +|+ + ? - -   60-69
- ? + ? + - + - + ?   70-79
- + - ? - + + + - ?   80-89
- - + + - - - ? + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + ? + - ? - ?   130-139

The drift f[169,178] = 6+f(89)+f(173), so f(89)=f(173)=-1. Also, f[243,250]=-5-f(83), so f(83)=-1. Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + +|+ + ? - -   60-69
- ? + ? + - + - + ?   70-79
- + - - - + + + - -   80-89
-|- + + - - - ? + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + ? + - ? - ?   130-139
- + ? + + + ? - + ?   140-149
- ? + - - + + ? ? -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - ?   170-179

It seems that once again we hit a point where nothing can be derived.

Case 1: f(2)=f(7)=f(19)=f(23)=f(37)=f(43)=f(67)=f(71)=1, f(29)=f(31)=-1

Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + + - -   60-69
-|+ + ? + - + - + ?   70-79
- + - - - + + + - -   80-89
-|- + + - - - ? + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + + + - ? - ?   130-139
- + + + + + ? - + ?   140-149
- ? + - - + + ? ? -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - ?   170-179

The discrepancy up to 74 is 3+f(73), so f(73)=-1. Now f[425,436]=-8+f(107)+f(109)+f(431)+f(433), so f(107)=f(109)=f(431)=f(433)=1. Also, because of the cut at 90, we must have that f(79)=1. Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + + - -   60-69
-|+ + - + - + - + +   70-79
- + - - - + + + - -   80-89
-|- + + - - - ? + -   90-99
+ ? + ? - + +|+ - +   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + + + - ? - ?   130-139
- + +|+ + + - - + ?   140-149
- ? + - - + + ? + -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - ?   170-179

Now, since f[319,336]=-7+f(163)+f(167)+f(331), we must have that f(163)=f(167)=f(331)=1. We now have that f[141,172]=7+f(149)+f(151)+f(157), so f(149)=f(151)=f(157)=-1. However, we now have that f[437,454]=11+f(223)+f(227)+f(439)+f(443)+f(449)>=6, which is a contradiction. Therefore f(71)=-1

Case 2: f(2)=f(7)=f(19)=f(23)=f(37)=f(43)=f(67)=1, f(29)=f(31)=f(71)=-1

Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + + - -   60-69
- - +|? + - + - + ?   70-79
- + - - -|+ + + - -   80-89
-|- + + - - - ? + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + + + - ? - ?   130-139
- + - + + + ? - + ?   140-149
- ? + - - + + ? ? -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - ?   170-179

Because of the cut at 84, f(73)=f(79)=1. Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + + - -   60-69
- - + + + - + - + +   70-79
- + - - - + + + - -   80-89
-|- + + - - - ? + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + + + - ? - ?   130-139
- + - + + + + - + ?   140-149
- ? + - - + + ? ? -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - ?   170-179

Now, f[285,298]=7-f(97)+f(149)+f(293). Therefore f(97)=1, f(149)=f(293)=-1. We also have that f[341,358]=8+f(179)+f(347)+f(349)+f(353). Therefore, f(179)=f(347)=f(349)=f(353)=-1. Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + + - -   60-69
- - + + + - + - + +   70-79
- + - - - + + + - -   80-89
-|- + + - - - + + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + + + - ? - ?   130-139
- + - + + + + - + -   140-149
- ? + - - + + ? ? -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - -   170-179

We also have that f(223)=f(449)=-1, because f[445,452]=6+f(223)+f(449). Now, we have six blocks:

(1) f[715,726] = -4+f(103)+f(181)-f(239)-f(241)+f(359)+f(719) >= -4 (2) f[341,362] = 4+f(181)+f(359) <= 4 (3) f[215,248] = -8+f(109)+f(227)+f(229)+f(233)+f(239)+f(241) >= -4 (4) f[325,336] = -6-f(109)+f(163)+f(167)+f(331) >= -4 (5) f[143,172] = 4+f(151)+f(157)+f(163)+f(167) <= 4 (6) f[447,454] = 4-f(151)+f(227) <= 4

Moving the constants to the RHS, we have:

(1) f(103)+f(181)-f(239)-f(241)+f(359)+f(719) >= 0 (2) f(181)+f(359) <= 0 (3) f(109)+f(227)+f(229)+f(233)+f(239)+f(241) >= 4 (4) -f(109)+f(163)+f(167)+f(331) >= 2 (5) f(151)+f(157)+f(163)+f(167) <= 0 (6) -f(151)+f(227) <= 0

adding and subtracting the inequalities, like (1)-(2)+(3)+(4)-(5)-(6), we get:

f(103)-f(157)+f(229)+f(233)+f(331)+f(719) >= 6. Therefore f(103)=f(229)=f(233)=f(331)=f(719)=1, f(157)=-1. Now, the discrepancy up to 106 is 3+f(101), so f(101)=-1. Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + + - -   60-69
- - + + + - + - + +   70-79
- + - - - + + + - -   80-89
-|- + + - - - + + -   90-99
+ - + + - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + + + - ? - ?   130-139
- + - + + + + - + -   140-149
- ? + - - + + - + -   150-159
- + + ? - - - ? - +   160-169
+ + + - + + - + - -   170-179

Since f[285,304]=5+f(151)<=4, we have that f(151)=-1. Now, from f[447,454] = 5+f(227), we get f(227)=-1. Also, from f[215,248], we have: -7+f(109)+f(239)+f(241)>=-4, so f(109)=f(239)=f(241)=1. By f[325,336] = -6+f(163)+f(167), f(163)=f(167)=1. The discrepancy up to 110 is 3+f(107), so f(107)=-1. However, now f[527,536]=6, which is a contradiction.

Case 3: f(2)=f(7)=f(19)=f(23)=f(37)=f(43)=1, f(29)=f(31)=f(67)=-1

Updating the table:

0 1 2 3 4 5 6 7 8 9
0|+ + - + - - + + +   0-9
- - - - + + + - + +   10-19
- - - + - + - - + -   20-29
+ - + + - - + + + +   30-39
- - - + - - + - - +   40-49
+ + - + - + + - - -   50-59
+ - - + + + + - -|-   60-69
- ? + ? + - + - + ?   70-79
- + - - - + + + - -   80-89
-|- + + - - - ? + -   90-99
+ ? + ? - + + ? - ?   100-109
+ - + + - - -|- - -   110-119
+ + - + - - + ? + -   120-129
+ ? + + - + - ? - ?   130-139
- + ? + + + ? - + ?   140-149
- ? + - - + + ? ? -   150-159
- + + ? - - - ? - +   160-169
+|+ + - + + - + - ?   170-179

The discrepancy up to 96 is -5+f(71)+f(73)+f(79). Therefore, f(71)=f(73)=f(79)=1 (remember f(83)=-1 because of f[243,250]). However, we now have that f[141,146] = 6, which is a contradiction. We can therefore conclude that the assumption f(43)=1 fails at 726.