Proof of DHJ(3) via density-increment

From Polymath Wiki
Revision as of 07:45, 19 March 2009 by Ryanworldwide (talk | contribs) (Created stub)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

Introduction

This article is intended to contain a proof outline of DHJ([math]\displaystyle{ 3 }[/math]) via the density-increment method. The proofs of each step in the outline will appear in separate articles. The goal is to rigorously codify the "second outline" proof. A secondary goal is to write the proof in such a way that it becomes "easy" to see the generalization to DHJ([math]\displaystyle{ k }[/math]).


Notation and definitions

We'll call the main probability distribution we work with the Pólya Urn distribution. As a distribution on [math]\displaystyle{ [k]^n }[/math], we'll write it as [math]\displaystyle{ \nu_k^n }[/math], or as [math]\displaystyle{ \nu_k }[/math] or [math]\displaystyle{ \nu }[/math] if it's clear from context. (Note: even if one only wants to prove DHJ([math]\displaystyle{ 3 }[/math]), one needs to define [math]\displaystyle{ \nu_k^n }[/math] for general [math]\displaystyle{ k }[/math].) One way to define it is as follows: Order the coordinates [math]\displaystyle{ [n] }[/math] in a list according to a random permutation. Now choose [math]\displaystyle{ k-1 }[/math] distinct "partition points" uniformly at random from the [math]\displaystyle{ \binom{n+1}{k-1} }[/math] possibilities. This partitions the list of coordinates into [math]\displaystyle{ k }[/math] sublists; take the [math]\displaystyle{ 1 }[/math]st sublist of coordinates to be [math]\displaystyle{ 1 }[/math]'s, the [math]\displaystyle{ 2 }[/math]nd sublist to be [math]\displaystyle{ 2 }[/math]'s, etc. Note that any string drawn from the Pólya Urn distribution is nondegenerate, meaning it contains at least one of each character in [math]\displaystyle{ [3] }[/math].

A closely related distribution is called the Equal Slices distribution. We will denote this distribution by [math]\displaystyle{ \overline{\nu}_k^n }[/math]. It has the same definition as the Pólya Urn definition just given, except that the [math]\displaystyle{ k-1 }[/math] partition points are "allowed to be equal"; more precisely, we choose the [math]\displaystyle{ 1 }[/math]st partition point uniformly from the [math]\displaystyle{ n+1 }[/math] possibilities, then we choose the [math]\displaystyle{ 2 }[/math]nd partition point uniformly from the [math]\displaystyle{ n+2 }[/math] possibilities, etc. It should be clear from these definitions that the total variation distance between [math]\displaystyle{ \nu_k^n }[/math] and [math]\displaystyle{ \overline{\nu}_k^n }[/math] is small. Here is a proof that it is [math]\displaystyle{ O(k^2/n) }[/math].

We identify combinatorial lines in [math]\displaystyle{ [3]^n }[/math] with strings in [math]\displaystyle{ [4]^n }[/math], where the [math]\displaystyle{ 4 }[/math] character is treated as identifying the "wildcard" set. Similarly, we identify [math]\displaystyle{ 2 }[/math]-dimensional combinatorial subspaces in [math]\displaystyle{ [3]^n }[/math] with strings in [math]\displaystyle{ [5]^n }[/math], where the characters [math]\displaystyle{ 4 }[/math] and [math]\displaystyle{ 5 }[/math] identify the [math]\displaystyle{ 2 }[/math] wildcard sets. Etc.