3D Moser statistics: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
New page: In the table below, "n a b c d" means that there are n Moser sets in [3]^3 with the statistics (a,b,c,d). 1 0 0 0 0 1 0 0 0 1 1 0 0 6 0 1 0 12 0 0 1 8 0 0 0 2 4 12 0 0 6 0 0 ...
 
No edit summary
Line 1: Line 1:
In the table below, "n a b c d" means that there are n Moser sets in [3]^3 with the statistics (a,b,c,d).
In the table below, "n a b c d" means that there are n Moser sets in [3]^3 with the statistics (a,b,c,d).  The code for generating this data can be found [[C code for Moser|here]].


  1 0 0 0 0  
  1 0 0 0 0  

Revision as of 20:28, 7 June 2009

In the table below, "n a b c d" means that there are n Moser sets in [3]^3 with the statistics (a,b,c,d). The code for generating this data can be found here.

1 0 0 0 0 
1 0 0 0 1 
1 0 0 6 0 
1 0 12 0 0 
1 8 0 0 0 
2 4 12 0 0 
6 0 0 1 0 
6 0 0 1 1 
6 0 0 5 0 
6 4 0 5 0 
8 0 0 3 1 
8 0 6 6 0 
8 0 9 3 0 
8 1 0 0 0 
8 1 0 0 1 
8 1 0 6 0 
8 1 12 0 0 
8 3 12 0 0 
8 5 9 0 0 
8 7 0 0 0 
8 7 3 0 0 
12 0 0 2 1 
12 0 1 0 0 
12 0 1 0 1 
12 0 1 6 0 
12 0 11 0 0 
12 6 0 2 0 
15 0 0 2 0 
15 0 0 4 0 
16 2 0 6 0 
16 2 12 0 0 
16 4 0 0 1 
16 6 6 0 0 
20 0 0 3 0 
24 0 10 1 0 
24 2 0 0 1 
24 4 11 0 0 
24 4 9 2 0 
24 5 0 3 0 
24 6 0 1 0 
24 7 1 0 0 
24 7 2 0 0 
28 2 0 0 0 
28 6 0 0 0 
32 3 0 0 1 
32 3 9 3 0 
32 4 0 3 1 
48 0 5 6 0 
48 0 9 2 0 
48 1 0 1 0 
48 1 0 1 1 
48 1 0 5 0 
48 3 0 5 0 
48 4 1 5 0 
48 4 4 5 0 
48 4 6 2 1 
48 6 3 2 0 
48 6 4 1 0 
54 0 2 6 0 
54 4 0 1 1 
56 3 0 0 0 
56 5 0 0 0 
60 0 2 0 1 
60 4 0 4 0 
60 6 1 2 0 
64 0 6 0 1 
64 0 6 3 1 
64 1 0 3 1 
64 1 6 6 0 
64 1 9 3 0 
66 0 10 0 0 
66 0 2 0 0 
70 4 0 0 0 
72 0 1 1 0 
72 0 1 1 1 
72 0 1 5 0 
72 4 0 2 1 
80 2 6 6 0 
96 0 1 3 1 
96 0 8 3 0 
96 1 0 2 1 
96 1 1 0 0 
96 1 1 0 1 
96 1 1 6 0 
96 1 11 0 0 
96 5 0 2 0 
96 5 4 3 0 
96 5 7 1 0 
96 5 8 0 0 
96 6 2 2 0 
104 2 9 3 0 
104 3 0 3 1 
108 0 4 6 0 
108 0 6 5 0 
108 0 7 4 0 
108 2 0 5 0 
108 6 5 0 0 
112 0 3 6 0 
112 3 6 3 1 
120 1 0 2 0 
120 1 0 4 0 
120 3 11 0 0 
120 4 6 1 1 
120 5 0 1 0 
120 5 6 2 0 
120 6 1 1 0 
132 2 0 1 1 
132 4 2 5 0 
132 4 6 4 0 
144 0 1 2 1 
144 2 0 3 1 
144 3 0 1 1 
144 4 1 0 1 
144 4 3 5 0 
144 4 9 1 0 
156 2 0 1 0 
156 6 1 0 0 
160 0 3 0 1 
160 1 0 3 0 
162 4 10 0 0 
168 5 1 3 0 
168 6 3 1 0 
180 0 1 2 0 
180 0 1 4 0 
180 2 1 6 0 
192 0 5 0 1 
192 1 10 1 0 
192 3 10 1 0 
192 4 4 3 1 
204 2 11 0 0 
212 4 0 3 0 
216 0 6 1 1 
216 0 6 2 1 
216 0 9 1 0 
216 3 0 2 1 
216 4 6 0 1 
216 6 2 1 0 
220 0 3 0 0 
220 0 9 0 0 
240 0 1 3 0 
240 0 4 0 1 
240 2 0 2 1 
240 3 0 4 0 
246 4 0 1 0 
264 3 0 1 0 
264 3 6 5 0 
264 4 1 3 1 
276 2 1 0 1 
288 4 7 3 0 
300 2 0 4 0 
300 6 4 0 0 
312 3 9 2 0 
324 2 1 0 0 
336 0 2 5 0 
336 3 1 0 1 
336 4 0 2 0 
348 0 2 1 1 
360 2 0 2 0 
360 4 5 2 1 
360 6 2 0 0 
384 0 2 1 0 
384 0 5 3 1 
384 1 5 6 0 
384 1 9 2 0 
384 2 10 1 0 
384 4 8 2 0 
384 5 3 3 0 
408 5 2 3 0 
432 0 2 3 1 
432 1 2 6 0 
432 3 7 4 0 
432 5 1 0 0 
440 2 0 3 0 
440 6 3 0 0 
456 4 1 1 1 
480 0 8 2 0 
480 1 2 0 1 
480 3 8 3 0 
488 3 0 3 0 
495 0 4 0 0 
495 0 8 0 0 
504 0 5 5 0 
504 3 0 2 0 
504 3 1 5 0 
504 5 7 0 0 
512 1 6 0 1 
512 1 6 3 1 
516 4 1 4 0 
528 1 10 0 0 
528 1 2 0 0 
528 2 5 6 0 
540 4 2 0 1 
576 1 1 1 0 
576 1 1 1 1 
576 1 1 5 0 
600 3 1 0 0 
600 4 1 2 1 
648 5 5 2 0 
660 4 1 0 0 
672 0 2 2 1 
672 4 5 4 0 
696 5 1 2 0 
720 2 9 2 0 
720 5 6 1 0 
744 4 2 3 1 
744 4 5 1 1 
756 2 2 6 0 
768 0 3 5 0 
768 0 7 3 0 
768 1 1 3 1 
768 1 8 3 0 
768 2 6 3 1 
772 4 9 0 0 
792 0 5 0 0 
792 0 5 1 1 
792 0 7 0 0 
792 4 3 3 1 
792 4 5 0 1 
816 0 6 4 0 
816 3 10 0 0 
864 0 3 1 1 
864 0 4 3 1 
864 1 4 6 0 
864 1 6 5 0 
864 1 7 4 0 
870 0 2 4 0 
870 0 8 1 0 
888 5 1 1 0 
894 0 4 5 0 
896 0 3 3 1 
896 1 3 6 0 
896 3 6 0 1 
924 0 6 0 0 
930 0 2 2 0 
1008 0 5 2 1 
1008 3 6 2 1 
1056 3 1 3 1 
1056 3 5 3 1 
1088 4 3 0 1 
1152 1 1 2 1 
1152 2 6 0 1 
1158 0 4 1 1 
1188 2 10 0 0 
1200 0 2 3 0 
1200 0 3 1 0 
1224 2 1 5 0 
1254 4 4 0 1 
1280 1 3 0 1 
1296 2 4 6 0 
1296 2 6 5 0 
1320 2 2 0 1 
1344 2 8 3 0 
1404 2 7 4 0 
1416 4 8 1 0 
1440 1 1 2 0 
1440 1 1 4 0 
1440 4 4 2 1 
1456 2 3 6 0 
1464 3 2 0 1 
1464 5 2 0 0 
1488 3 1 1 1 
1488 4 2 1 1 
1512 2 1 1 1 
1512 5 6 0 0 
1536 0 3 2 1 
1536 1 5 0 1 
1608 3 5 5 0 
1632 2 1 3 1 
1662 4 2 4 0 
1716 2 2 0 0 
1728 1 6 1 1 
1728 1 6 2 1 
1728 1 9 1 0 
1760 1 3 0 0 
1760 1 9 0 0 
1788 0 4 2 1 
1800 2 1 1 0 
1806 4 4 4 0 
1824 3 6 1 1 
1824 4 2 2 1 
1824 5 4 2 0 
1896 4 1 3 0 
1920 1 1 3 0 
1920 1 4 0 1 
1920 4 4 1 1 
1932 0 7 2 0 
1944 5 2 2 0 
2016 3 2 5 0 
2064 0 7 1 0 
2096 4 6 3 0 
2160 3 9 1 0 
2172 0 3 4 0 
2208 3 1 2 1 
2232 0 5 4 0 
2280 4 1 1 0 
2352 5 5 1 0 
2376 4 3 1 1 
2436 0 4 1 0 
2472 4 3 2 1 
2496 4 3 4 0 
2520 3 1 4 0 
2634 4 8 0 0 
2640 4 7 2 0 
2640 5 3 2 0 
2688 1 2 5 0 
2696 0 6 3 0 
2712 0 3 2 0 
2712 5 2 1 0 
2736 2 1 2 1 
2784 1 2 1 1 
2802 4 2 0 0 
2808 3 1 1 0 
2856 5 3 0 0 
2856 5 5 0 0 
2928 3 2 0 0 
2988 0 4 4 0 
3024 2 6 2 1 
3072 1 2 1 0 
3072 1 5 3 1 
3072 3 5 0 1 
3072 4 1 2 0 
3192 0 6 1 0 
3248 0 3 3 0 
3320 3 9 0 0 
3360 0 5 1 0 
3360 2 3 0 1 
3392 3 3 0 1 
3420 2 1 4 0 
3456 1 2 3 1 
3456 2 6 1 1 
3528 5 4 0 0 
3600 3 4 5 0 
3648 2 5 0 1 
3672 2 9 1 0 
3840 1 8 2 0 
3840 3 3 5 0 
3888 3 2 3 1 
3936 3 8 2 0 
3960 1 4 0 0 
3960 1 8 0 0 
3960 3 4 3 1 
4032 1 5 5 0 
4140 2 1 2 0 
4176 3 6 4 0 
4180 2 9 0 0 
4224 5 4 1 0 
4248 0 6 2 0 
4416 3 4 0 1 
4440 5 3 1 0 
4800 2 4 0 1 
4911 0 4 2 0 
4920 0 5 3 0 
4992 2 5 3 1 
5040 2 1 3 0 
5112 3 7 3 0 
5136 3 1 3 0 
5172 0 4 3 0 
5328 3 1 2 0 
5376 1 2 2 1 
5376 2 2 5 0 
5500 2 3 0 0 
5712 0 5 2 0 
6096 3 5 2 1 
6120 3 2 1 1 
6144 1 3 5 0 
6144 1 7 3 0 
6176 3 3 3 1 
6336 1 5 0 0 
6336 1 5 1 1 
6336 1 7 0 0 
6336 4 7 1 0 
6384 4 7 0 0 
6528 1 6 4 0 
6552 2 5 5 0 
6720 4 2 3 0 
6720 4 5 3 0 
6912 1 3 1 1 
6912 1 4 3 1 
6912 2 2 3 1 
6960 1 2 4 0 
6960 1 8 1 0 
6960 2 2 1 1 
7064 4 3 0 0 
7152 1 4 5 0 
7168 1 3 3 1 
7392 1 6 0 0 
7440 1 2 2 0 
7680 2 8 2 0 
8016 3 5 1 1 
8064 1 5 2 1 
8592 3 2 2 1 
8600 3 3 0 0 
9000 3 8 0 0 
9132 4 2 1 0 
9216 2 2 1 0 
9264 1 4 1 1 
9600 1 2 3 0 
9600 1 3 1 0 
9804 4 6 2 0 
9900 2 8 0 0 
10464 3 2 4 0 
10776 3 8 1 0 
11004 4 6 0 0 
11424 2 6 4 0 
11520 2 3 5 0 
11520 2 7 3 0 
11652 4 2 2 0 
11742 4 4 0 0 
11880 2 4 0 0 
12000 4 4 3 0 
12096 2 2 2 1 
12096 2 4 3 1 
12120 4 3 3 0 
12288 1 3 2 1 
12516 2 4 5 0 
12768 3 3 1 1 
13152 3 2 1 0 
13440 2 3 3 1 
13464 2 5 1 1 
13512 4 5 0 0 
14208 3 4 1 1 
14304 1 4 2 1 
14352 3 4 2 1 
14688 3 5 4 0 
15120 2 5 2 1 
15456 1 7 2 0 
15660 2 2 4 0 
15660 2 8 1 0 
15888 3 3 2 1 
16416 2 3 1 1 
16512 1 7 1 0 
16536 4 6 1 0 
16632 2 7 0 0 
16920 3 4 0 0 
17136 3 7 0 0 
17376 1 3 4 0 
17856 1 5 4 0 
18216 2 5 0 0 
19488 1 4 1 0 
19896 3 7 2 0 
20328 2 6 0 0 
20460 2 2 2 0 
20760 4 3 1 0 
20844 2 4 1 1 
21568 1 6 3 0 
21576 4 5 2 0 
21696 1 3 2 0 
21936 3 3 4 0 
22176 3 2 3 0 
22904 3 6 3 0 
23472 3 5 0 0 
23520 3 6 0 0 
23904 1 4 4 0 
23904 4 3 2 0 
23952 3 2 2 0 
24000 2 2 3 0 
24672 3 4 4 0 
25536 1 6 1 0 
25984 1 3 3 0 
26112 2 3 2 1 
26880 1 5 1 0 
27360 4 5 1 0 
27600 2 3 1 0 
28608 2 4 2 1 
29040 4 4 2 0 
29550 4 4 1 0 
31272 3 7 1 0 
32844 2 7 2 0 
33480 2 5 4 0 
33984 1 6 2 0 
35736 3 3 1 0 
36924 2 3 4 0 
39216 2 7 1 0 
39288 1 4 2 0 
39360 1 5 3 0 
41376 1 4 3 0 
43136 2 6 3 0 
45696 1 5 2 0 
47808 2 4 4 0 
50912 3 3 3 0 
52272 3 5 3 0 
53592 2 4 1 0 
54216 3 6 2 0 
56952 2 3 2 0 
58368 3 6 1 0 
59952 3 3 2 0 
61712 2 3 3 0 
62400 3 4 1 0 
63840 2 6 1 0 
67416 3 4 3 0 
70560 2 5 1 0 
73176 3 5 1 0 
76464 2 6 2 0 
83640 2 5 3 0 
88944 3 5 2 0 
91824 3 4 2 0 
93096 2 4 3 0 
98220 2 4 2 0 
108528 2 5 2 0