3D Moser statistics

From Polymath Wiki
Jump to navigationJump to search

In the table below, "n a b c d" means that there are n Moser sets in [3]^3 with the statistics (a,b,c,d). The code for generating this data can be found here.

1 0 0 0 0 
1 0 0 0 1 
1 0 0 6 0 
1 0 12 0 0 
1 8 0 0 0 
2 4 12 0 0 
6 0 0 1 0 
6 0 0 1 1 
6 0 0 5 0 
6 4 0 5 0 
8 0 0 3 1 
8 0 6 6 0 
8 0 9 3 0 
8 1 0 0 0 
8 1 0 0 1 
8 1 0 6 0 
8 1 12 0 0 
8 3 12 0 0 
8 5 9 0 0 
8 7 0 0 0 
8 7 3 0 0 
12 0 0 2 1 
12 0 1 0 0 
12 0 1 0 1 
12 0 1 6 0 
12 0 11 0 0 
12 6 0 2 0 
15 0 0 2 0 
15 0 0 4 0 
16 2 0 6 0 
16 2 12 0 0 
16 4 0 0 1 
16 6 6 0 0 
20 0 0 3 0 
24 0 10 1 0 
24 2 0 0 1 
24 4 11 0 0 
24 4 9 2 0 
24 5 0 3 0 
24 6 0 1 0 
24 7 1 0 0 
24 7 2 0 0 
28 2 0 0 0 
28 6 0 0 0 
32 3 0 0 1 
32 3 9 3 0 
32 4 0 3 1 
48 0 5 6 0 
48 0 9 2 0 
48 1 0 1 0 
48 1 0 1 1 
48 1 0 5 0 
48 3 0 5 0 
48 4 1 5 0 
48 4 4 5 0 
48 4 6 2 1 
48 6 3 2 0 
48 6 4 1 0 
54 0 2 6 0 
54 4 0 1 1 
56 3 0 0 0 
56 5 0 0 0 
60 0 2 0 1 
60 4 0 4 0 
60 6 1 2 0 
64 0 6 0 1 
64 0 6 3 1 
64 1 0 3 1 
64 1 6 6 0 
64 1 9 3 0 
66 0 10 0 0 
66 0 2 0 0 
70 4 0 0 0 
72 0 1 1 0 
72 0 1 1 1 
72 0 1 5 0 
72 4 0 2 1 
80 2 6 6 0 
96 0 1 3 1 
96 0 8 3 0 
96 1 0 2 1 
96 1 1 0 0 
96 1 1 0 1 
96 1 1 6 0 
96 1 11 0 0 
96 5 0 2 0 
96 5 4 3 0 
96 5 7 1 0 
96 5 8 0 0 
96 6 2 2 0 
104 2 9 3 0 
104 3 0 3 1 
108 0 4 6 0 
108 0 6 5 0 
108 0 7 4 0 
108 2 0 5 0 
108 6 5 0 0 
112 0 3 6 0 
112 3 6 3 1 
120 1 0 2 0 
120 1 0 4 0 
120 3 11 0 0 
120 4 6 1 1 
120 5 0 1 0 
120 5 6 2 0 
120 6 1 1 0 
132 2 0 1 1 
132 4 2 5 0 
132 4 6 4 0 
144 0 1 2 1 
144 2 0 3 1 
144 3 0 1 1 
144 4 1 0 1 
144 4 3 5 0 
144 4 9 1 0 
156 2 0 1 0 
156 6 1 0 0 
160 0 3 0 1 
160 1 0 3 0 
162 4 10 0 0 
168 5 1 3 0 
168 6 3 1 0 
180 0 1 2 0 
180 0 1 4 0 
180 2 1 6 0 
192 0 5 0 1 
192 1 10 1 0 
192 3 10 1 0 
192 4 4 3 1 
204 2 11 0 0 
212 4 0 3 0 
216 0 6 1 1 
216 0 6 2 1 
216 0 9 1 0 
216 3 0 2 1 
216 4 6 0 1 
216 6 2 1 0 
220 0 3 0 0 
220 0 9 0 0 
240 0 1 3 0 
240 0 4 0 1 
240 2 0 2 1 
240 3 0 4 0 
246 4 0 1 0 
264 3 0 1 0 
264 3 6 5 0 
264 4 1 3 1 
276 2 1 0 1 
288 4 7 3 0 
300 2 0 4 0 
300 6 4 0 0 
312 3 9 2 0 
324 2 1 0 0 
336 0 2 5 0 
336 3 1 0 1 
336 4 0 2 0 
348 0 2 1 1 
360 2 0 2 0 
360 4 5 2 1 
360 6 2 0 0 
384 0 2 1 0 
384 0 5 3 1 
384 1 5 6 0 
384 1 9 2 0 
384 2 10 1 0 
384 4 8 2 0 
384 5 3 3 0 
408 5 2 3 0 
432 0 2 3 1 
432 1 2 6 0 
432 3 7 4 0 
432 5 1 0 0 
440 2 0 3 0 
440 6 3 0 0 
456 4 1 1 1 
480 0 8 2 0 
480 1 2 0 1 
480 3 8 3 0 
488 3 0 3 0 
495 0 4 0 0 
495 0 8 0 0 
504 0 5 5 0 
504 3 0 2 0 
504 3 1 5 0 
504 5 7 0 0 
512 1 6 0 1 
512 1 6 3 1 
516 4 1 4 0 
528 1 10 0 0 
528 1 2 0 0 
528 2 5 6 0 
540 4 2 0 1 
576 1 1 1 0 
576 1 1 1 1 
576 1 1 5 0 
600 3 1 0 0 
600 4 1 2 1 
648 5 5 2 0 
660 4 1 0 0 
672 0 2 2 1 
672 4 5 4 0 
696 5 1 2 0 
720 2 9 2 0 
720 5 6 1 0 
744 4 2 3 1 
744 4 5 1 1 
756 2 2 6 0 
768 0 3 5 0 
768 0 7 3 0 
768 1 1 3 1 
768 1 8 3 0 
768 2 6 3 1 
772 4 9 0 0 
792 0 5 0 0 
792 0 5 1 1 
792 0 7 0 0 
792 4 3 3 1 
792 4 5 0 1 
816 0 6 4 0 
816 3 10 0 0 
864 0 3 1 1 
864 0 4 3 1 
864 1 4 6 0 
864 1 6 5 0 
864 1 7 4 0 
870 0 2 4 0 
870 0 8 1 0 
888 5 1 1 0 
894 0 4 5 0 
896 0 3 3 1 
896 1 3 6 0 
896 3 6 0 1 
924 0 6 0 0 
930 0 2 2 0 
1008 0 5 2 1 
1008 3 6 2 1 
1056 3 1 3 1 
1056 3 5 3 1 
1088 4 3 0 1 
1152 1 1 2 1 
1152 2 6 0 1 
1158 0 4 1 1 
1188 2 10 0 0 
1200 0 2 3 0 
1200 0 3 1 0 
1224 2 1 5 0 
1254 4 4 0 1 
1280 1 3 0 1 
1296 2 4 6 0 
1296 2 6 5 0 
1320 2 2 0 1 
1344 2 8 3 0 
1404 2 7 4 0 
1416 4 8 1 0 
1440 1 1 2 0 
1440 1 1 4 0 
1440 4 4 2 1 
1456 2 3 6 0 
1464 3 2 0 1 
1464 5 2 0 0 
1488 3 1 1 1 
1488 4 2 1 1 
1512 2 1 1 1 
1512 5 6 0 0 
1536 0 3 2 1 
1536 1 5 0 1 
1608 3 5 5 0 
1632 2 1 3 1 
1662 4 2 4 0 
1716 2 2 0 0 
1728 1 6 1 1 
1728 1 6 2 1 
1728 1 9 1 0 
1760 1 3 0 0 
1760 1 9 0 0 
1788 0 4 2 1 
1800 2 1 1 0 
1806 4 4 4 0 
1824 3 6 1 1 
1824 4 2 2 1 
1824 5 4 2 0 
1896 4 1 3 0 
1920 1 1 3 0 
1920 1 4 0 1 
1920 4 4 1 1 
1932 0 7 2 0 
1944 5 2 2 0 
2016 3 2 5 0 
2064 0 7 1 0 
2096 4 6 3 0 
2160 3 9 1 0 
2172 0 3 4 0 
2208 3 1 2 1 
2232 0 5 4 0 
2280 4 1 1 0 
2352 5 5 1 0 
2376 4 3 1 1 
2436 0 4 1 0 
2472 4 3 2 1 
2496 4 3 4 0 
2520 3 1 4 0 
2634 4 8 0 0 
2640 4 7 2 0 
2640 5 3 2 0 
2688 1 2 5 0 
2696 0 6 3 0 
2712 0 3 2 0 
2712 5 2 1 0 
2736 2 1 2 1 
2784 1 2 1 1 
2802 4 2 0 0 
2808 3 1 1 0 
2856 5 3 0 0 
2856 5 5 0 0 
2928 3 2 0 0 
2988 0 4 4 0 
3024 2 6 2 1 
3072 1 2 1 0 
3072 1 5 3 1 
3072 3 5 0 1 
3072 4 1 2 0 
3192 0 6 1 0 
3248 0 3 3 0 
3320 3 9 0 0 
3360 0 5 1 0 
3360 2 3 0 1 
3392 3 3 0 1 
3420 2 1 4 0 
3456 1 2 3 1 
3456 2 6 1 1 
3528 5 4 0 0 
3600 3 4 5 0 
3648 2 5 0 1 
3672 2 9 1 0 
3840 1 8 2 0 
3840 3 3 5 0 
3888 3 2 3 1 
3936 3 8 2 0 
3960 1 4 0 0 
3960 1 8 0 0 
3960 3 4 3 1 
4032 1 5 5 0 
4140 2 1 2 0 
4176 3 6 4 0 
4180 2 9 0 0 
4224 5 4 1 0 
4248 0 6 2 0 
4416 3 4 0 1 
4440 5 3 1 0 
4800 2 4 0 1 
4911 0 4 2 0 
4920 0 5 3 0 
4992 2 5 3 1 
5040 2 1 3 0 
5112 3 7 3 0 
5136 3 1 3 0 
5172 0 4 3 0 
5328 3 1 2 0 
5376 1 2 2 1 
5376 2 2 5 0 
5500 2 3 0 0 
5712 0 5 2 0 
6096 3 5 2 1 
6120 3 2 1 1 
6144 1 3 5 0 
6144 1 7 3 0 
6176 3 3 3 1 
6336 1 5 0 0 
6336 1 5 1 1 
6336 1 7 0 0 
6336 4 7 1 0 
6384 4 7 0 0 
6528 1 6 4 0 
6552 2 5 5 0 
6720 4 2 3 0 
6720 4 5 3 0 
6912 1 3 1 1 
6912 1 4 3 1 
6912 2 2 3 1 
6960 1 2 4 0 
6960 1 8 1 0 
6960 2 2 1 1 
7064 4 3 0 0 
7152 1 4 5 0 
7168 1 3 3 1 
7392 1 6 0 0 
7440 1 2 2 0 
7680 2 8 2 0 
8016 3 5 1 1 
8064 1 5 2 1 
8592 3 2 2 1 
8600 3 3 0 0 
9000 3 8 0 0 
9132 4 2 1 0 
9216 2 2 1 0 
9264 1 4 1 1 
9600 1 2 3 0 
9600 1 3 1 0 
9804 4 6 2 0 
9900 2 8 0 0 
10464 3 2 4 0 
10776 3 8 1 0 
11004 4 6 0 0 
11424 2 6 4 0 
11520 2 3 5 0 
11520 2 7 3 0 
11652 4 2 2 0 
11742 4 4 0 0 
11880 2 4 0 0 
12000 4 4 3 0 
12096 2 2 2 1 
12096 2 4 3 1 
12120 4 3 3 0 
12288 1 3 2 1 
12516 2 4 5 0 
12768 3 3 1 1 
13152 3 2 1 0 
13440 2 3 3 1 
13464 2 5 1 1 
13512 4 5 0 0 
14208 3 4 1 1 
14304 1 4 2 1 
14352 3 4 2 1 
14688 3 5 4 0 
15120 2 5 2 1 
15456 1 7 2 0 
15660 2 2 4 0 
15660 2 8 1 0 
15888 3 3 2 1 
16416 2 3 1 1 
16512 1 7 1 0 
16536 4 6 1 0 
16632 2 7 0 0 
16920 3 4 0 0 
17136 3 7 0 0 
17376 1 3 4 0 
17856 1 5 4 0 
18216 2 5 0 0 
19488 1 4 1 0 
19896 3 7 2 0 
20328 2 6 0 0 
20460 2 2 2 0 
20760 4 3 1 0 
20844 2 4 1 1 
21568 1 6 3 0 
21576 4 5 2 0 
21696 1 3 2 0 
21936 3 3 4 0 
22176 3 2 3 0 
22904 3 6 3 0 
23472 3 5 0 0 
23520 3 6 0 0 
23904 1 4 4 0 
23904 4 3 2 0 
23952 3 2 2 0 
24000 2 2 3 0 
24672 3 4 4 0 
25536 1 6 1 0 
25984 1 3 3 0 
26112 2 3 2 1 
26880 1 5 1 0 
27360 4 5 1 0 
27600 2 3 1 0 
28608 2 4 2 1 
29040 4 4 2 0 
29550 4 4 1 0 
31272 3 7 1 0 
32844 2 7 2 0 
33480 2 5 4 0 
33984 1 6 2 0 
35736 3 3 1 0 
36924 2 3 4 0 
39216 2 7 1 0 
39288 1 4 2 0 
39360 1 5 3 0 
41376 1 4 3 0 
43136 2 6 3 0 
45696 1 5 2 0 
47808 2 4 4 0 
50912 3 3 3 0 
52272 3 5 3 0 
53592 2 4 1 0 
54216 3 6 2 0 
56952 2 3 2 0 
58368 3 6 1 0 
59952 3 3 2 0 
61712 2 3 3 0 
62400 3 4 1 0 
63840 2 6 1 0 
67416 3 4 3 0 
70560 2 5 1 0 
73176 3 5 1 0 
76464 2 6 2 0 
83640 2 5 3 0 
88944 3 5 2 0 
91824 3 4 2 0 
93096 2 4 3 0 
98220 2 4 2 0 
108528 2 5 2 0

In the table below, n a means that there were n 3D Moser sets whose set of a-points (represented here as a 3-digit octal string from 0 to 377) is a. The source code for generating this list is here.

82173 40
82173 4
82173 200
82173 20
82173 2
82173 100
82173 10
82173 1
82173 0
69868 44
69868 30
69868 201
69868 102
51060 60
51060 5
51060 42
51060 300
51060 3
51060 240
51060 210
51060 21
51060 14
51060 120
51060 12
51060 104
51052 6
51052 50
51052 41
51052 24
51052 220
51052 22
51052 204
51052 202
51052 140
51052 110
51052 11
51052 101
25777 70
25777 64
25777 54
25777 46
25777 45
25777 34
25777 32
25777 31
25777 302
25777 301
25777 244
25777 241
25777 230
25777 221
25777 211
25777 205
25777 203
25777 144
25777 142
25777 130
25777 122
25777 112
25777 106
25777 103
20472 51
20472 26
20472 224
20472 222
20472 206
20472 150
20472 141
20472 111
16836 7
16836 62
16836 61
16836 52
16836 43
16836 340
16836 320
16836 310
16836 304
16836 260
16836 250
16836 25
16836 242
16836 23
16836 214
16836 212
16836 160
16836 16
16836 15
16836 13
16836 124
16836 121
16836 114
16836 105
9604 74
9604 303
9604 245
9604 231
9604 146
9604 132
5750 63
5750 360
5750 314
5750 252
5750 17
5750 125
5000 71
5000 66
5000 55
5000 36
5000 341
5000 322
5000 311
5000 306
5000 264
5000 251
5000 246
5000 234
5000 232
5000 225
5000 223
5000 207
5000 170
5000 154
5000 152
5000 145
5000 143
5000 131
5000 126
5000 113
4825 226
4825 151
4021 72
4021 65
4021 56
4021 47
4021 35
4021 344
4021 342
4021 330
4021 33
4021 321
4021 312
4021 305
4021 270
4021 261
4021 254
4021 243
4021 215
4021 213
4021 164
4021 162
4021 134
4021 123
4021 116
4021 107
3071 53
3071 350
3071 324
3071 27
3071 262
3071 216
3071 161
3071 115
784 76
784 75
784 346
784 345
784 343
784 332
784 331
784 323
784 313
784 307
784 274
784 271
784 265
784 255
784 247
784 235
784 233
784 174
784 172
784 166
784 156
784 147
784 136
784 133
625 73
625 67
625 57
625 370
625 37
625 364
625 362
625 361
625 354
625 352
625 334
625 325
625 316
625 315
625 272
625 263
625 256
625 253
625 217
625 165
625 163
625 135
625 127
625 117
512 351
512 326
512 266
512 236
512 227
512 171
512 155
512 153
98 77
98 374
98 372
98 365
98 363
98 356
98 335
98 317
98 273
98 257
98 167
98 137
64 371
64 366
64 355
64 353
64 347
64 336
64 333
64 327
64 276
64 275
64 267
64 237
64 176
64 175
64 173
64 157
8 376
8 375
8 373
8 367
8 357
8 337
8 277
8 177
1 377