3D Moser statistics
From Polymath Wiki
Jump to navigationJump to search
In the table below, "n a b c d" means that there are n Moser sets in [3]^3 with the statistics (a,b,c,d). The code for generating this data can be found here.
1 0 0 0 0 1 0 0 0 1 1 0 0 6 0 1 0 12 0 0 1 8 0 0 0 2 4 12 0 0 6 0 0 1 0 6 0 0 1 1 6 0 0 5 0 6 4 0 5 0 8 0 0 3 1 8 0 6 6 0 8 0 9 3 0 8 1 0 0 0 8 1 0 0 1 8 1 0 6 0 8 1 12 0 0 8 3 12 0 0 8 5 9 0 0 8 7 0 0 0 8 7 3 0 0 12 0 0 2 1 12 0 1 0 0 12 0 1 0 1 12 0 1 6 0 12 0 11 0 0 12 6 0 2 0 15 0 0 2 0 15 0 0 4 0 16 2 0 6 0 16 2 12 0 0 16 4 0 0 1 16 6 6 0 0 20 0 0 3 0 24 0 10 1 0 24 2 0 0 1 24 4 11 0 0 24 4 9 2 0 24 5 0 3 0 24 6 0 1 0 24 7 1 0 0 24 7 2 0 0 28 2 0 0 0 28 6 0 0 0 32 3 0 0 1 32 3 9 3 0 32 4 0 3 1 48 0 5 6 0 48 0 9 2 0 48 1 0 1 0 48 1 0 1 1 48 1 0 5 0 48 3 0 5 0 48 4 1 5 0 48 4 4 5 0 48 4 6 2 1 48 6 3 2 0 48 6 4 1 0 54 0 2 6 0 54 4 0 1 1 56 3 0 0 0 56 5 0 0 0 60 0 2 0 1 60 4 0 4 0 60 6 1 2 0 64 0 6 0 1 64 0 6 3 1 64 1 0 3 1 64 1 6 6 0 64 1 9 3 0 66 0 10 0 0 66 0 2 0 0 70 4 0 0 0 72 0 1 1 0 72 0 1 1 1 72 0 1 5 0 72 4 0 2 1 80 2 6 6 0 96 0 1 3 1 96 0 8 3 0 96 1 0 2 1 96 1 1 0 0 96 1 1 0 1 96 1 1 6 0 96 1 11 0 0 96 5 0 2 0 96 5 4 3 0 96 5 7 1 0 96 5 8 0 0 96 6 2 2 0 104 2 9 3 0 104 3 0 3 1 108 0 4 6 0 108 0 6 5 0 108 0 7 4 0 108 2 0 5 0 108 6 5 0 0 112 0 3 6 0 112 3 6 3 1 120 1 0 2 0 120 1 0 4 0 120 3 11 0 0 120 4 6 1 1 120 5 0 1 0 120 5 6 2 0 120 6 1 1 0 132 2 0 1 1 132 4 2 5 0 132 4 6 4 0 144 0 1 2 1 144 2 0 3 1 144 3 0 1 1 144 4 1 0 1 144 4 3 5 0 144 4 9 1 0 156 2 0 1 0 156 6 1 0 0 160 0 3 0 1 160 1 0 3 0 162 4 10 0 0 168 5 1 3 0 168 6 3 1 0 180 0 1 2 0 180 0 1 4 0 180 2 1 6 0 192 0 5 0 1 192 1 10 1 0 192 3 10 1 0 192 4 4 3 1 204 2 11 0 0 212 4 0 3 0 216 0 6 1 1 216 0 6 2 1 216 0 9 1 0 216 3 0 2 1 216 4 6 0 1 216 6 2 1 0 220 0 3 0 0 220 0 9 0 0 240 0 1 3 0 240 0 4 0 1 240 2 0 2 1 240 3 0 4 0 246 4 0 1 0 264 3 0 1 0 264 3 6 5 0 264 4 1 3 1 276 2 1 0 1 288 4 7 3 0 300 2 0 4 0 300 6 4 0 0 312 3 9 2 0 324 2 1 0 0 336 0 2 5 0 336 3 1 0 1 336 4 0 2 0 348 0 2 1 1 360 2 0 2 0 360 4 5 2 1 360 6 2 0 0 384 0 2 1 0 384 0 5 3 1 384 1 5 6 0 384 1 9 2 0 384 2 10 1 0 384 4 8 2 0 384 5 3 3 0 408 5 2 3 0 432 0 2 3 1 432 1 2 6 0 432 3 7 4 0 432 5 1 0 0 440 2 0 3 0 440 6 3 0 0 456 4 1 1 1 480 0 8 2 0 480 1 2 0 1 480 3 8 3 0 488 3 0 3 0 495 0 4 0 0 495 0 8 0 0 504 0 5 5 0 504 3 0 2 0 504 3 1 5 0 504 5 7 0 0 512 1 6 0 1 512 1 6 3 1 516 4 1 4 0 528 1 10 0 0 528 1 2 0 0 528 2 5 6 0 540 4 2 0 1 576 1 1 1 0 576 1 1 1 1 576 1 1 5 0 600 3 1 0 0 600 4 1 2 1 648 5 5 2 0 660 4 1 0 0 672 0 2 2 1 672 4 5 4 0 696 5 1 2 0 720 2 9 2 0 720 5 6 1 0 744 4 2 3 1 744 4 5 1 1 756 2 2 6 0 768 0 3 5 0 768 0 7 3 0 768 1 1 3 1 768 1 8 3 0 768 2 6 3 1 772 4 9 0 0 792 0 5 0 0 792 0 5 1 1 792 0 7 0 0 792 4 3 3 1 792 4 5 0 1 816 0 6 4 0 816 3 10 0 0 864 0 3 1 1 864 0 4 3 1 864 1 4 6 0 864 1 6 5 0 864 1 7 4 0 870 0 2 4 0 870 0 8 1 0 888 5 1 1 0 894 0 4 5 0 896 0 3 3 1 896 1 3 6 0 896 3 6 0 1 924 0 6 0 0 930 0 2 2 0 1008 0 5 2 1 1008 3 6 2 1 1056 3 1 3 1 1056 3 5 3 1 1088 4 3 0 1 1152 1 1 2 1 1152 2 6 0 1 1158 0 4 1 1 1188 2 10 0 0 1200 0 2 3 0 1200 0 3 1 0 1224 2 1 5 0 1254 4 4 0 1 1280 1 3 0 1 1296 2 4 6 0 1296 2 6 5 0 1320 2 2 0 1 1344 2 8 3 0 1404 2 7 4 0 1416 4 8 1 0 1440 1 1 2 0 1440 1 1 4 0 1440 4 4 2 1 1456 2 3 6 0 1464 3 2 0 1 1464 5 2 0 0 1488 3 1 1 1 1488 4 2 1 1 1512 2 1 1 1 1512 5 6 0 0 1536 0 3 2 1 1536 1 5 0 1 1608 3 5 5 0 1632 2 1 3 1 1662 4 2 4 0 1716 2 2 0 0 1728 1 6 1 1 1728 1 6 2 1 1728 1 9 1 0 1760 1 3 0 0 1760 1 9 0 0 1788 0 4 2 1 1800 2 1 1 0 1806 4 4 4 0 1824 3 6 1 1 1824 4 2 2 1 1824 5 4 2 0 1896 4 1 3 0 1920 1 1 3 0 1920 1 4 0 1 1920 4 4 1 1 1932 0 7 2 0 1944 5 2 2 0 2016 3 2 5 0 2064 0 7 1 0 2096 4 6 3 0 2160 3 9 1 0 2172 0 3 4 0 2208 3 1 2 1 2232 0 5 4 0 2280 4 1 1 0 2352 5 5 1 0 2376 4 3 1 1 2436 0 4 1 0 2472 4 3 2 1 2496 4 3 4 0 2520 3 1 4 0 2634 4 8 0 0 2640 4 7 2 0 2640 5 3 2 0 2688 1 2 5 0 2696 0 6 3 0 2712 0 3 2 0 2712 5 2 1 0 2736 2 1 2 1 2784 1 2 1 1 2802 4 2 0 0 2808 3 1 1 0 2856 5 3 0 0 2856 5 5 0 0 2928 3 2 0 0 2988 0 4 4 0 3024 2 6 2 1 3072 1 2 1 0 3072 1 5 3 1 3072 3 5 0 1 3072 4 1 2 0 3192 0 6 1 0 3248 0 3 3 0 3320 3 9 0 0 3360 0 5 1 0 3360 2 3 0 1 3392 3 3 0 1 3420 2 1 4 0 3456 1 2 3 1 3456 2 6 1 1 3528 5 4 0 0 3600 3 4 5 0 3648 2 5 0 1 3672 2 9 1 0 3840 1 8 2 0 3840 3 3 5 0 3888 3 2 3 1 3936 3 8 2 0 3960 1 4 0 0 3960 1 8 0 0 3960 3 4 3 1 4032 1 5 5 0 4140 2 1 2 0 4176 3 6 4 0 4180 2 9 0 0 4224 5 4 1 0 4248 0 6 2 0 4416 3 4 0 1 4440 5 3 1 0 4800 2 4 0 1 4911 0 4 2 0 4920 0 5 3 0 4992 2 5 3 1 5040 2 1 3 0 5112 3 7 3 0 5136 3 1 3 0 5172 0 4 3 0 5328 3 1 2 0 5376 1 2 2 1 5376 2 2 5 0 5500 2 3 0 0 5712 0 5 2 0 6096 3 5 2 1 6120 3 2 1 1 6144 1 3 5 0 6144 1 7 3 0 6176 3 3 3 1 6336 1 5 0 0 6336 1 5 1 1 6336 1 7 0 0 6336 4 7 1 0 6384 4 7 0 0 6528 1 6 4 0 6552 2 5 5 0 6720 4 2 3 0 6720 4 5 3 0 6912 1 3 1 1 6912 1 4 3 1 6912 2 2 3 1 6960 1 2 4 0 6960 1 8 1 0 6960 2 2 1 1 7064 4 3 0 0 7152 1 4 5 0 7168 1 3 3 1 7392 1 6 0 0 7440 1 2 2 0 7680 2 8 2 0 8016 3 5 1 1 8064 1 5 2 1 8592 3 2 2 1 8600 3 3 0 0 9000 3 8 0 0 9132 4 2 1 0 9216 2 2 1 0 9264 1 4 1 1 9600 1 2 3 0 9600 1 3 1 0 9804 4 6 2 0 9900 2 8 0 0 10464 3 2 4 0 10776 3 8 1 0 11004 4 6 0 0 11424 2 6 4 0 11520 2 3 5 0 11520 2 7 3 0 11652 4 2 2 0 11742 4 4 0 0 11880 2 4 0 0 12000 4 4 3 0 12096 2 2 2 1 12096 2 4 3 1 12120 4 3 3 0 12288 1 3 2 1 12516 2 4 5 0 12768 3 3 1 1 13152 3 2 1 0 13440 2 3 3 1 13464 2 5 1 1 13512 4 5 0 0 14208 3 4 1 1 14304 1 4 2 1 14352 3 4 2 1 14688 3 5 4 0 15120 2 5 2 1 15456 1 7 2 0 15660 2 2 4 0 15660 2 8 1 0 15888 3 3 2 1 16416 2 3 1 1 16512 1 7 1 0 16536 4 6 1 0 16632 2 7 0 0 16920 3 4 0 0 17136 3 7 0 0 17376 1 3 4 0 17856 1 5 4 0 18216 2 5 0 0 19488 1 4 1 0 19896 3 7 2 0 20328 2 6 0 0 20460 2 2 2 0 20760 4 3 1 0 20844 2 4 1 1 21568 1 6 3 0 21576 4 5 2 0 21696 1 3 2 0 21936 3 3 4 0 22176 3 2 3 0 22904 3 6 3 0 23472 3 5 0 0 23520 3 6 0 0 23904 1 4 4 0 23904 4 3 2 0 23952 3 2 2 0 24000 2 2 3 0 24672 3 4 4 0 25536 1 6 1 0 25984 1 3 3 0 26112 2 3 2 1 26880 1 5 1 0 27360 4 5 1 0 27600 2 3 1 0 28608 2 4 2 1 29040 4 4 2 0 29550 4 4 1 0 31272 3 7 1 0 32844 2 7 2 0 33480 2 5 4 0 33984 1 6 2 0 35736 3 3 1 0 36924 2 3 4 0 39216 2 7 1 0 39288 1 4 2 0 39360 1 5 3 0 41376 1 4 3 0 43136 2 6 3 0 45696 1 5 2 0 47808 2 4 4 0 50912 3 3 3 0 52272 3 5 3 0 53592 2 4 1 0 54216 3 6 2 0 56952 2 3 2 0 58368 3 6 1 0 59952 3 3 2 0 61712 2 3 3 0 62400 3 4 1 0 63840 2 6 1 0 67416 3 4 3 0 70560 2 5 1 0 73176 3 5 1 0 76464 2 6 2 0 83640 2 5 3 0 88944 3 5 2 0 91824 3 4 2 0 93096 2 4 3 0 98220 2 4 2 0 108528 2 5 2 0
In the table below, n a means that there were n 3D Moser sets whose set of a-points (represented here as a 3-digit octal string from 0 to 377) is a. The source code for generating this list is here.
82173 40 82173 4 82173 200 82173 20 82173 2 82173 100 82173 10 82173 1 82173 0 69868 44 69868 30 69868 201 69868 102 51060 60 51060 5 51060 42 51060 300 51060 3 51060 240 51060 210 51060 21 51060 14 51060 120 51060 12 51060 104 51052 6 51052 50 51052 41 51052 24 51052 220 51052 22 51052 204 51052 202 51052 140 51052 110 51052 11 51052 101 25777 70 25777 64 25777 54 25777 46 25777 45 25777 34 25777 32 25777 31 25777 302 25777 301 25777 244 25777 241 25777 230 25777 221 25777 211 25777 205 25777 203 25777 144 25777 142 25777 130 25777 122 25777 112 25777 106 25777 103 20472 51 20472 26 20472 224 20472 222 20472 206 20472 150 20472 141 20472 111 16836 7 16836 62 16836 61 16836 52 16836 43 16836 340 16836 320 16836 310 16836 304 16836 260 16836 250 16836 25 16836 242 16836 23 16836 214 16836 212 16836 160 16836 16 16836 15 16836 13 16836 124 16836 121 16836 114 16836 105 9604 74 9604 303 9604 245 9604 231 9604 146 9604 132 5750 63 5750 360 5750 314 5750 252 5750 17 5750 125 5000 71 5000 66 5000 55 5000 36 5000 341 5000 322 5000 311 5000 306 5000 264 5000 251 5000 246 5000 234 5000 232 5000 225 5000 223 5000 207 5000 170 5000 154 5000 152 5000 145 5000 143 5000 131 5000 126 5000 113 4825 226 4825 151 4021 72 4021 65 4021 56 4021 47 4021 35 4021 344 4021 342 4021 330 4021 33 4021 321 4021 312 4021 305 4021 270 4021 261 4021 254 4021 243 4021 215 4021 213 4021 164 4021 162 4021 134 4021 123 4021 116 4021 107 3071 53 3071 350 3071 324 3071 27 3071 262 3071 216 3071 161 3071 115 784 76 784 75 784 346 784 345 784 343 784 332 784 331 784 323 784 313 784 307 784 274 784 271 784 265 784 255 784 247 784 235 784 233 784 174 784 172 784 166 784 156 784 147 784 136 784 133 625 73 625 67 625 57 625 370 625 37 625 364 625 362 625 361 625 354 625 352 625 334 625 325 625 316 625 315 625 272 625 263 625 256 625 253 625 217 625 165 625 163 625 135 625 127 625 117 512 351 512 326 512 266 512 236 512 227 512 171 512 155 512 153 98 77 98 374 98 372 98 365 98 363 98 356 98 335 98 317 98 273 98 257 98 167 98 137 64 371 64 366 64 355 64 353 64 347 64 336 64 333 64 327 64 276 64 275 64 267 64 237 64 176 64 175 64 173 64 157 8 376 8 375 8 373 8 367 8 357 8 337 8 277 8 177 1 377