Bounded gaps between primes: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Line 42: Line 42:
* [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals.  Acta Arith. 25 (1973/74), 375–391. [http://www.ams.org/mathscinet-getitem?mr=396440 MathSciNet]
* [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals.  Acta Arith. 25 (1973/74), 375–391. [http://www.ams.org/mathscinet-getitem?mr=396440 MathSciNet]
* [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. [http://www.ams.org/mathscinet-getitem?mr=2414788 MathSciNet]
* [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. [http://www.ams.org/mathscinet-getitem?mr=2414788 MathSciNet]
* [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. [http://www.ams.org/mathscinet-getitem?mr=374060 MathSciNet]
* [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438.  [http://www.ams.org/mathscinet-getitem?mr=337832 MathSciNet] [http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13434-8/home.html Article]
* [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438.  [http://www.ams.org/mathscinet-getitem?mr=337832 MathSciNet] [http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13434-8/home.html Article]
* [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. [http://www.ams.org/mathscinet-getitem?mr=2265008 MathSciNet]
* [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. [http://www.ams.org/mathscinet-getitem?mr=2265008 MathSciNet]

Revision as of 09:54, 4 June 2013

Polymath threads

Other relevant blog posts

MathOverflow

Wikipedia

Recent papers and notes

Bibliography

  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. JSTOR
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. MathSciNet
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet