Bounded gaps between primes: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Line 5: Line 5:
* [http://polymathprojects.org/2013/06/04/polymath-proposal-bounded-gaps-between-primes/ Polymath proposal: bounded gaps between primes], Terence Tao, 4 June 2013.
* [http://polymathprojects.org/2013/06/04/polymath-proposal-bounded-gaps-between-primes/ Polymath proposal: bounded gaps between primes], Terence Tao, 4 June 2013.


== Code ==
== Code and data ==


* [https://github.com/semorrison/polymath8 Github], Scott Morrison
* [https://github.com/semorrison/polymath8 Github], Scott Morrison
** [http://tqft.net/misc/finding%20k_0.nb A mathematica notebook for finding k_0], Scott Morrison
** [http://tqft.net/misc/finding%20k_0.nb A mathematica notebook for finding k_0], Scott Morrison
* [http://www.opertech.com/primes/k-tuples.html k-tuple pattern data], Thomas J Engelsma


== Other relevant blog posts ==
== Other relevant blog posts ==

Revision as of 10:07, 4 June 2013

Polymath threads

Code and data

Other relevant blog posts

MathOverflow

Wikipedia

Recent papers and notes

Media

Bibliography

  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. JSTOR
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. MathSciNet
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet