Bounded gaps between primes: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
No edit summary
Line 3: Line 3:
{| border=1
{| border=1
|-
|-
!Date!!<math>\varpi</math>!! <math>k_0<./math> !! <math>H</math>  
!Date!!<math>\varpi</math>!! <math>k_0</math> !! <math>H</math>  
|-
|-
| 14 May  
| 14 May  

Revision as of 10:30, 4 June 2013

World records

Date [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ k_0 }[/math] [math]\displaystyle{ H }[/math]
14 May 1/1168 (Zhang) 3,500,000 (Zhang) 70,000,000 (Zhang)
21 May 63,374,611 (Lewko)
28 May 59,874,594 (Trudgian)
30 May 59,470,640 (Morrison)

59,093,364 (Morrison) 58,885,998 (Tao, conditional) 57,554,086 (Morrison)

31 May 2,618,607 (Morrison) 42,543,038 (Morrison)

42,342,946 (Morrison)

1 Jun 42,342,924 (Tao)
2 Jun 866,605 (Morrison) 13,008,612 (Morrison)
3 Jun 341,640 (Morrison) 4,982,086 (Morrison)

4,802,222 (Morrison)

Polymath threads

Code and data

Other relevant blog posts

MathOverflow

Wikipedia

Recent papers and notes

Media

Bibliography

Additional links for some of these references (e.g. to arXiv versions) would be greatly appreciated.

  • [BFI1986] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. Acta Math. 156 (1986), no. 3-4, 203–251. MathSciNet
  • [BFI1987] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. II. Math. Ann. 277 (1987), no. 3, 361–393. MathSciNet
  • [BFI1989] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. III. J. Amer. Math. Soc. 2 (1989), no. 2, 215–224. MathSciNet
  • [FI1983] Fouvry, E.; Iwaniec, H. Primes in arithmetic progressions. Acta Arith. 42 (1983), no. 2, 197–218. MathSciNet Article
  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. JSTOR
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [GR1998] Gordon, Daniel M.; Rodemich, Gene Dense admissible sets. Algorithmic number theory (Portland, OR, 1998), 216–225, Lecture Notes in Comput. Sci., 1423, Springer, Berlin, 1998. MathSciNet Article
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. MathSciNet
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet