Bounded gaps between primes: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
added links to fulltexts
additional fulltext
Line 118: Line 118:
* [GR1998] Gordon, Daniel M.; Rodemich, Gene Dense admissible sets. Algorithmic number theory (Portland, OR, 1998), 216–225, Lecture Notes in Comput. Sci., 1423, Springer, Berlin, 1998. [http://www.ams.org/mathscinet-getitem?mr=1726073 MathSciNet] [http://www.ccrwest.org/gordon/ants.pdf Article]
* [GR1998] Gordon, Daniel M.; Rodemich, Gene Dense admissible sets. Algorithmic number theory (Portland, OR, 1998), 216–225, Lecture Notes in Comput. Sci., 1423, Springer, Berlin, 1998. [http://www.ams.org/mathscinet-getitem?mr=1726073 MathSciNet] [http://www.ccrwest.org/gordon/ants.pdf Article]
* [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. [http://www.ams.org/mathscinet-getitem?mr=340194 MathSciNet] [http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13434-8/S0002-9904-1974-13434-8.pdf Article]
* [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. [http://www.ams.org/mathscinet-getitem?mr=340194 MathSciNet] [http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13434-8/S0002-9904-1974-13434-8.pdf Article]
* [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals.  Acta Arith. 25 (1973/74), 375–391. [http://www.ams.org/mathscinet-getitem?mr=396440 MathSciNet]
* [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals.  Acta Arith. 25 (1973/74), 375–391. [http://www.ams.org/mathscinet-getitem?mr=396440 MathSciNet] [https://eudml.org/doc/205282 Article]
* [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310.  [http://arxiv.org/abs/math/0602599 arXiv] [http://www.ams.org/mathscinet-getitem?mr=2414788 MathSciNet]
* [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310.  [http://arxiv.org/abs/math/0602599 arXiv] [http://www.ams.org/mathscinet-getitem?mr=2414788 MathSciNet]
* [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. [http://www.ams.org/mathscinet-getitem?mr=374060 MathSciNet]
* [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. [http://www.ams.org/mathscinet-getitem?mr=374060 MathSciNet]
* [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438.  [http://www.ams.org/mathscinet-getitem?mr=337832 MathSciNet] [http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13434-8/home.html Article]
* [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438.  [http://www.ams.org/mathscinet-getitem?mr=337832 MathSciNet] [http://www.ams.org/journals/bull/1974-80-03/S0002-9904-1974-13434-8/home.html Article]
* [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. [http://www.ams.org/mathscinet-getitem?mr=2265008 MathSciNet] [http://www.ams.org/journals/bull/2007-44-01/S0273-0979-06-01142-6/ Article]
* [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. [http://www.ams.org/mathscinet-getitem?mr=2265008 MathSciNet] [http://www.ams.org/journals/bull/2007-44-01/S0273-0979-06-01142-6/ Article]

Revision as of 11:07, 4 June 2013

World records

Date [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ k_0 }[/math] [math]\displaystyle{ H }[/math]
14 May 1/1168 (Zhang) 3,500,000 (Zhang) 70,000,000 (Zhang)
21 May 63,374,611 (Lewko)
28 May 59,874,594 (Trudgian)
30 May 59,470,640 (Morrison)

59,093,364 (Morrison)

58,885,998 (Tao, conditional)

57,554,086 (Morrison)

31 May 2,618,607 (Morrison) 42,543,038 (Morrison)

42,342,946 (Morrison)

1 Jun 42,342,924 (Tao)
2 Jun 866,605 (Morrison) 13,008,612 (Morrison)
3 Jun 341,640 (Morrison) 4,982,086 (Morrison)

4,802,222 (Morrison)

Polymath threads

Code and data

Other relevant blog posts

MathOverflow

Wikipedia

Recent papers and notes

Media

Bibliography

Additional links for some of these references (e.g. to arXiv versions) would be greatly appreciated.

  • [BFI1986] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. Acta Math. 156 (1986), no. 3-4, 203–251. MathSciNet
  • [BFI1987] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. II. Math. Ann. 277 (1987), no. 3, 361–393. MathSciNet Article
  • [BFI1989] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. III. J. Amer. Math. Soc. 2 (1989), no. 2, 215–224. MathSciNet Article
  • [FI1983] Fouvry, E.; Iwaniec, H. Primes in arithmetic progressions. Acta Arith. 42 (1983), no. 2, 197–218. MathSciNet Article
  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. JSTOR
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [GR1998] Gordon, Daniel M.; Rodemich, Gene Dense admissible sets. Algorithmic number theory (Portland, OR, 1998), 216–225, Lecture Notes in Comput. Sci., 1423, Springer, Berlin, 1998. MathSciNet Article
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet Article
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet Article
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. arXiv MathSciNet
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet Article