Finding optimal k0 values: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Xfxie (talk | contribs)
No edit summary
Xfxie (talk | contribs)
Line 126: Line 126:
| 9.89E-08
| 9.89E-08
| -5.0940E-06
| -5.0940E-06
|}
{| {| class="wikitable" border=1 style="margin: 1em auto 1em auto;"
|+ '''"Failure" results at <math>(k_0^{opt}-1)</math> for some instances of <math>c_\varpi, c_\delta, i</math> values.'''
|-
!colspan="3" | Instance
!rowspan="2" | <math>k_0^{*}</math>
!rowspan="2" | <math>k_0^{opt}</math>
!colspan="4" | Parameters
!colspan="3" | Error Terms
!rowspan="2" | Objective
|-
!<math>c_{\varpi}</math> !! <math>~c_{\delta}~</math> !! <math>~i~</math> !! <math>\varpi</math> !! <math>~\delta~</math> !! <math>~\delta'~</math> !! <math>~A~</math> !! <math>~\kappa_1~</math> !! <math>~\kappa_2~</math> !! <math>~\kappa_3~</math>
|-
|600/7
| 180/7
| 4
| 630
| [http://www.cs.cmu.edu/~xfxie/project/admissible/k0/sol_varpi600d7_631.mpl 631]
| 1.1639134E-02
| 9.1775130E-05
| 8.3989836E-03
| 193.9881059
| 3.02E-06
| 3.40E-08
| 1.00E-07
| 4.0614E-05
|}
|}

Revision as of 09:47, 1 September 2013

This is a sub-page for the Polymath8 project "bounded gaps between primes".

Benchmarks

Optimal results at [math]\displaystyle{ k_0^{opt} }[/math] for some instances of [math]\displaystyle{ c_\varpi, c_\delta, i }[/math] values.
Instance [math]\displaystyle{ k_0^{*} }[/math] [math]\displaystyle{ k_0^{opt} }[/math] Parameters Error Terms Objective
[math]\displaystyle{ c_{\varpi} }[/math] [math]\displaystyle{ ~c_{\delta}~ }[/math] [math]\displaystyle{ ~i~ }[/math] [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ ~\delta~ }[/math] [math]\displaystyle{ ~\delta'~ }[/math] [math]\displaystyle{ ~A~ }[/math] [math]\displaystyle{ ~\kappa_1~ }[/math] [math]\displaystyle{ ~\kappa_2~ }[/math] [math]\displaystyle{ ~\kappa_3~ }[/math]
348 68 1 5446 5447 2.8733352E-03 1.1670730E-06 1.4955362E-03 2559.258877 5.63E-09 1.52E-12 8.54E-11 -1.1881E-06
168 48 2 1781 1783 5.9495534E-03 9.8965035E-06 3.7117059E-03 757.8242621 1.58E-07 3.24E-10 3.65E-09 -5.9684E-06
148 33 1 1465 1466 6.7542244E-03 1.1357314E-05 4.7101572E-03 626.6135921 8.79E-08 8.57E-11 3.63E-09 -2.2867E-06
140 32 1 1345 1346 7.1398444E-03 1.3180858E-05 5.0540952E-03 577.7849932 1.10E-07 1.22E-10 4.75E-09 -6.7812E-06
116 30 1 1006 1007 8.6150249E-03 2.1903801E-05 6.4285376E-03 408.9674914 2.30E-07 3.80E-10 1.17E-08 -6.2560E-06
108 30 1 901 902 9.2518776E-03 2.6573843E-05 7.0318847E-03 359.6376563 3.08E-07 6.00E-10 1.76E-08 -1.0924E-05
280/3 80/3 2 719 720 1.0699851E-02 5.0521044E-05 8.0398983E-03 260.2624368 1.04E-06 4.98E-09 4.33E-08 -5.5687E-06
600/7 180/7 4 630 632 1.1639206E-02 9.1536798E-05 8.3866560E-03 194.5246551 3.01E-06 3.40E-08 9.89E-08 -5.0940E-06
"Failure" results at [math]\displaystyle{ (k_0^{opt}-1) }[/math] for some instances of [math]\displaystyle{ c_\varpi, c_\delta, i }[/math] values.
Instance [math]\displaystyle{ k_0^{*} }[/math] [math]\displaystyle{ k_0^{opt} }[/math] Parameters Error Terms Objective
[math]\displaystyle{ c_{\varpi} }[/math] [math]\displaystyle{ ~c_{\delta}~ }[/math] [math]\displaystyle{ ~i~ }[/math] [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ ~\delta~ }[/math] [math]\displaystyle{ ~\delta'~ }[/math] [math]\displaystyle{ ~A~ }[/math] [math]\displaystyle{ ~\kappa_1~ }[/math] [math]\displaystyle{ ~\kappa_2~ }[/math] [math]\displaystyle{ ~\kappa_3~ }[/math]
600/7 180/7 4 630 631 1.1639134E-02 9.1775130E-05 8.3989836E-03 193.9881059 3.02E-06 3.40E-08 1.00E-07 4.0614E-05