Bounded gaps between primes: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Line 12: Line 12:
== Other relevant blog posts ==
== Other relevant blog posts ==


* [http://blogs.ethz.ch/kowalski/2009/01/22/the-goldston-pintz-yildirim-result-and-how-far-do-we-have-to-walk-to-twin-primes/ The Goldston-Pintz-Yildirim result, and how far do we have to walk to twin primes ?], 22 Jan 2009.
* [http://terrytao.wordpress.com/2008/11/19/marker-lecture-iii-small-gaps-between-primes/ Marker lecture III: “Small gaps between primes”], Terence Tao, 19 Nov 2008.
* [http://blogs.ethz.ch/kowalski/2009/01/22/the-goldston-pintz-yildirim-result-and-how-far-do-we-have-to-walk-to-twin-primes/ The Goldston-Pintz-Yildirim result, and how far do we have to walk to twin primes ?], Emmanuel Kowalski, 22 Jan 2009.
* [http://www.math.columbia.edu/~woit/wordpress/?p=5865 Number Theory News], Peter Woit, 12 May 2013.
* [http://golem.ph.utexas.edu/category/2013/05/bounded_gaps_between_primes.html Bounded Gaps Between Primes], Emily Riehl, 14 May 2013.
* [http://blogs.ethz.ch/kowalski/2013/05/21/bounded-gaps-between-primes/ Bounded gaps between primes!], Emmanuel Kowalski, 21 May 2013.
* [http://blogs.ethz.ch/kowalski/2013/05/21/bounded-gaps-between-primes/ Bounded gaps between primes!], Emmanuel Kowalski, 21 May 2013.
* [http://blogs.ethz.ch/kowalski/2013/06/04/bounded-gaps-between-primes-some-grittier-details/ Bounded gaps between primes: some grittier details], Emmanuel Kowalski, 4 June 2013.
* [http://blogs.ethz.ch/kowalski/2013/06/04/bounded-gaps-between-primes-some-grittier-details/ Bounded gaps between primes: some grittier details], Emmanuel Kowalski, 4 June 2013.

Revision as of 10:02, 4 June 2013

Polymath threads

Code

Other relevant blog posts

MathOverflow

Wikipedia

Recent papers and notes

Bibliography

  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. JSTOR
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. MathSciNet
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet