Bounded gaps between primes: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Line 41: Line 41:
* [http://arxiv.org/abs/1305.6289 Polignac Numbers, Conjectures of Erdös on Gaps between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture], Janos Pintz, 27 May 2013.
* [http://arxiv.org/abs/1305.6289 Polignac Numbers, Conjectures of Erdös on Gaps between Primes, Arithmetic Progressions in Primes, and the Bounded Gap Conjecture], Janos Pintz, 27 May 2013.
* [http://arxiv.org/abs/1305.6369 A poor man's improvement on Zhang's result: there are infinitely many prime gaps less than 60 million], T. S. Trudgian, 28 May 2013.
* [http://arxiv.org/abs/1305.6369 A poor man's improvement on Zhang's result: there are infinitely many prime gaps less than 60 million], T. S. Trudgian, 28 May 2013.
* [http://www.math.ethz.ch/~kowalski/friedlander-iwaniec-sum.pdf The Friedlander-Iwaniec sum], É. Fouvry, E. Kowalski, Ph. Michel., May 2013.
* [http://terrytao.files.wordpress.com/2013/06/bounds.pdf Notes on Zhang's prime gaps paper], Terence Tao, 1 June 2013.
* [http://terrytao.files.wordpress.com/2013/06/bounds.pdf Notes on Zhang's prime gaps paper], Terence Tao, 1 June 2013.
* [http://arxiv.org/abs/1306.0511 Bounded prime gaps in short intervals], Johan Andersson, 3 June 2013.
* [http://arxiv.org/abs/1306.0511 Bounded prime gaps in short intervals], Johan Andersson, 3 June 2013.

Revision as of 10:05, 4 June 2013

Polymath threads

Code

Other relevant blog posts

MathOverflow

Wikipedia

Recent papers and notes

Media

Bibliography

  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. JSTOR
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. MathSciNet
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet