Finding narrow admissible tuples: Difference between revisions
Line 32: | Line 32: | ||
For <math>0<y<z</math>, sieve the positive integers by <math>1\bmod p</math> for primes <math>p \le y</math> and by <math>0\bmod p</math> for primes <math>y < p \le z</math>. For a given choice of <math>y</math>, the parameter <math>z</math> is minimized subject to ensuring that the first <math>k_0</math> survivors (after the first) form an admissible sequence <math>\mathcal{H}</math>, so the only free parameter is <math>y</math>, which is chosen to minimize the diameter of <math>\mathcal{H}</math>. The case <math>y=1</math> corresponds to a (partial) sieve of Eratosthenes. One can instead sieve intervals centered about the origin, or asymmetric intervals, as with the Hensley-Richards sieve. | For <math>0<y<z</math>, sieve the positive integers by <math>1\bmod p</math> for primes <math>p \le y</math> and by <math>0\bmod p</math> for primes <math>y < p \le z</math>. For a given choice of <math>y</math>, the parameter <math>z</math> is minimized subject to ensuring that the first <math>k_0</math> survivors (after the first) form an admissible sequence <math>\mathcal{H}</math>, so the only free parameter is <math>y</math>, which is chosen to minimize the diameter of <math>\mathcal{H}</math>. The case <math>y=1</math> corresponds to a (partial) sieve of Eratosthenes. One can instead sieve intervals centered about the origin, or asymmetric intervals, as with the Hensley-Richards sieve. | ||
=== Greedy | === Greedy sieve === | ||
For a given interval (e.g., <math>[1,x]</math>, <math>[-x,x]</math>, or asymmetric <math>[x_0,x_1]</math>) one sieves a single residue class <math>a \bmod p</math> for increasing primes <math>p=2,3,5,\ldots</math>, with <math>a</math> chosen to maximize the number of survivors. Ties can be broken in a number of ways: minimize <math>a\in[0,p-1]</math>, maximize <math>a\in [0,p-1]</math>, minimize <math>|a-\lfloor p/2\rfloor|</math>, or randomly. If not all residue classes modulo <math>p</math> are occupied by survivors, then <math>a</math> will be chosen so that no survivors are sieved. | |||
This necessarily occurs once <math>p</math> exceeds the number of survivors but typically happens much sooner. One then chooses the narrowest <math>k_0</math>-tuple <math>{\mathcal H}</math> among the survivors (if there are fewer than <math>k_0</math> survivors, retry with a wider interval). | |||
=== Greedy-Schinzel sieve === | |||
Heuristically, the performance of the greedy sieve is significantly improved by starting with a Schinzel sieve with <math>y=2</math> and <math>z=\sqrt{x_1-x_0}</math> and then continuing in a greedy fashion | |||
(this was originally referred to as the [http://sbseminar.wordpress.com/2013/05/30/i-just-cant-resist-there-are-infinitely-many-pairs-of-primes-at-most-59470640-apart/#comment-23566 "greedy-greedy" approach). | |||
=== Seeded greedy sieve === | |||
Given an initial sequence <math>{\mathcal S}</math> that is known to contain an admissible <math>k_0</math>-tuple, one can apply greedy sieving to the minimal interval containing <math>{\mathcal S}</math> until an admissible sequence of survivors remains, and then choose the narrowest <math>k_0</math>=tuple it contains. The sieving methods above can be viewed as the special case where <math>{\mathcal S}</math> is the set of integers in some interval. The main difference is that the choice of <math>{\mathcal S}</math> affects when ties occur and how they are broken with greedy sieving. | |||
One approach is to take <math>{\mathcal S}</math> to be the union of two <math>k_0</math>-tuples that lie in roughly the same interval (see Iterated merging) below. | |||
=== Iterated merging === | |||
=== Local optimizations === | |||
=== Further refinements === | === Further refinements === |
Revision as of 04:43, 10 June 2013
For any natural number [math]\displaystyle{ k_0 }[/math], an admissible [math]\displaystyle{ k_0 }[/math]-tuple is a finite set [math]\displaystyle{ {\mathcal H} }[/math] of integers of cardinality [math]\displaystyle{ k_0 }[/math] which avoids at least one residue class modulo [math]\displaystyle{ p }[/math] for each prime [math]\displaystyle{ p }[/math]. (Note that one only needs to check those primes [math]\displaystyle{ p }[/math] of size at most [math]\displaystyle{ k_0 }[/math], so this is a finitely checkable condition. Let [math]\displaystyle{ H(k_0) }[/math] denote the minimal diameter [math]\displaystyle{ \max {\mathcal H} - \min {\mathcal H} }[/math] of an admissible [math]\displaystyle{ k_0 }[/math]-tuple. As part of the Polymath8 project, we would like to find as good an upper bound on [math]\displaystyle{ H(k_0) }[/math] as possible for given values of [math]\displaystyle{ k_0 }[/math]. (To a lesser extent, we would also be interested in lower bounds on this quantity.
Upper bounds
Upper bounds are primarily constructed through various "sieves" that delete one residue class modulo [math]\displaystyle{ p }[/math] from an interval for a lot of primes [math]\displaystyle{ p }[/math]. Examples of sieves, in roughly increasing order of efficiency, are listed below.
Zhang sieve
The Zhang sieve uses the tuple
- [math]\displaystyle{ {\mathcal H} = \{p_{m+1}, \ldots, p_{m+k_0}\} }[/math]
where [math]\displaystyle{ m }[/math] is taken to optimize the diameter [math]\displaystyle{ p_{m+k_0}-p_{m+1} }[/math] while staying admissible (in practice, this basically means making [math]\displaystyle{ m }[/math] as small as possible). Certainly any [math]\displaystyle{ m }[/math] with [math]\displaystyle{ p_{m+1} \gt k_0 }[/math] works, but this is not optimal.
Hensley-Richards sieve
The Hensley-Richard sieve uses the tuple
- [math]\displaystyle{ {\mathcal H} = \{-p_{m+\lfloor k_0/2\rfloor - 1}, \ldots, -p_{m+1}, -1, +1, p_{m+1},\ldots, p_{m+\lfloor k_0+1/2-1}\} }[/math]
where m is again optimised to minimize the diameter while staying admissible.
Asymmetric Hensley-Richards sieve
The asymmetric Hensley-Richard sieve uses the tuple
- [math]\displaystyle{ {\mathcal H} = \{-p_{m+\lfloor k_0/2\rfloor - 1-i}, \ldots, -p_{m+1}, -1, +1, p_{m+1},\ldots, p_{m+\lfloor k_0+1/2-1+i}\} }[/math]
where [math]\displaystyle{ i }[/math] is an integer and [math]\displaystyle{ i,m }[/math] are optimised to minimize the diameter while staying admissible.
Schinzel sieve
For [math]\displaystyle{ 0\lt y\lt z }[/math], sieve the positive integers by [math]\displaystyle{ 1\bmod p }[/math] for primes [math]\displaystyle{ p \le y }[/math] and by [math]\displaystyle{ 0\bmod p }[/math] for primes [math]\displaystyle{ y \lt p \le z }[/math]. For a given choice of [math]\displaystyle{ y }[/math], the parameter [math]\displaystyle{ z }[/math] is minimized subject to ensuring that the first [math]\displaystyle{ k_0 }[/math] survivors (after the first) form an admissible sequence [math]\displaystyle{ \mathcal{H} }[/math], so the only free parameter is [math]\displaystyle{ y }[/math], which is chosen to minimize the diameter of [math]\displaystyle{ \mathcal{H} }[/math]. The case [math]\displaystyle{ y=1 }[/math] corresponds to a (partial) sieve of Eratosthenes. One can instead sieve intervals centered about the origin, or asymmetric intervals, as with the Hensley-Richards sieve.
Greedy sieve
For a given interval (e.g., [math]\displaystyle{ [1,x] }[/math], [math]\displaystyle{ [-x,x] }[/math], or asymmetric [math]\displaystyle{ [x_0,x_1] }[/math]) one sieves a single residue class [math]\displaystyle{ a \bmod p }[/math] for increasing primes [math]\displaystyle{ p=2,3,5,\ldots }[/math], with [math]\displaystyle{ a }[/math] chosen to maximize the number of survivors. Ties can be broken in a number of ways: minimize [math]\displaystyle{ a\in[0,p-1] }[/math], maximize [math]\displaystyle{ a\in [0,p-1] }[/math], minimize [math]\displaystyle{ |a-\lfloor p/2\rfloor| }[/math], or randomly. If not all residue classes modulo [math]\displaystyle{ p }[/math] are occupied by survivors, then [math]\displaystyle{ a }[/math] will be chosen so that no survivors are sieved. This necessarily occurs once [math]\displaystyle{ p }[/math] exceeds the number of survivors but typically happens much sooner. One then chooses the narrowest [math]\displaystyle{ k_0 }[/math]-tuple [math]\displaystyle{ {\mathcal H} }[/math] among the survivors (if there are fewer than [math]\displaystyle{ k_0 }[/math] survivors, retry with a wider interval).
Greedy-Schinzel sieve
Heuristically, the performance of the greedy sieve is significantly improved by starting with a Schinzel sieve with [math]\displaystyle{ y=2 }[/math] and [math]\displaystyle{ z=\sqrt{x_1-x_0} }[/math] and then continuing in a greedy fashion (this was originally referred to as the [http://sbseminar.wordpress.com/2013/05/30/i-just-cant-resist-there-are-infinitely-many-pairs-of-primes-at-most-59470640-apart/#comment-23566 "greedy-greedy" approach).
Seeded greedy sieve
Given an initial sequence [math]\displaystyle{ {\mathcal S} }[/math] that is known to contain an admissible [math]\displaystyle{ k_0 }[/math]-tuple, one can apply greedy sieving to the minimal interval containing [math]\displaystyle{ {\mathcal S} }[/math] until an admissible sequence of survivors remains, and then choose the narrowest [math]\displaystyle{ k_0 }[/math]=tuple it contains. The sieving methods above can be viewed as the special case where [math]\displaystyle{ {\mathcal S} }[/math] is the set of integers in some interval. The main difference is that the choice of [math]\displaystyle{ {\mathcal S} }[/math] affects when ties occur and how they are broken with greedy sieving. One approach is to take [math]\displaystyle{ {\mathcal S} }[/math] to be the union of two [math]\displaystyle{ k_0 }[/math]-tuples that lie in roughly the same interval (see Iterated merging) below.
Iterated merging
Local optimizations
Further refinements
Lower bounds
There is a substantial amount of literature on bounding the quantity [math]\displaystyle{ \pi(x+y)-\pi(x) }[/math], the number of primes in a shifted interval [math]\displaystyle{ [x+1,x+y] }[/math], where [math]\displaystyle{ x,y }[/math] are natural numbers. As a general rule, whenever a bound of the form
- [math]\displaystyle{ \pi(x+y) - \pi(x) \leq F(y) }[/math] (*)
is established for some function [math]\displaystyle{ F(y) }[/math] of [math]\displaystyle{ y }[/math], the method of proof also gives a bound of the form
- [math]\displaystyle{ k_0 \leq F( H(k_0)+1 ). }[/math] (**)
Indeed, if one assumes the prime tuples conjecture, any admissible [math]\displaystyle{ k_0 }[/math]-tuple of diameter [math]\displaystyle{ H }[/math] can be translated into an interval of the form [math]\displaystyle{ [x+1,x+H+1] }[/math] for some [math]\displaystyle{ x }[/math]. In the opposite direction, all known bounds of the form (*) proceed by using the fact that for [math]\displaystyle{ x\gt y }[/math], the set of primes between [math]\displaystyle{ x+1 }[/math] and [math]\displaystyle{ x+y }[/math] is admissible, so the method of proof of (*) invariably also gives (**) as well.
Examples of lower bounds are as follows;
Brun-Titchmarsh inequality
The Brun-Titchmarsh theorem gives
- [math]\displaystyle{ \pi(x+y) - \pi(x) \leq (1 + o(1)) \frac{2y}{\log y} }[/math]
which then gives the lower bound
- [math]\displaystyle{ H(k_0) \geq (\frac{1}{2}-o(1)) k_0 \log k_0 }[/math].
Montgomery and Vaughan deleted the o(1) error from the Brun-Titchmarsh theorem [MV1973, Corollary 2], giving the more precise inequality
- [math]\displaystyle{ k_0 \leq 2 \frac{H(k_0)+1}{\log (H(k_0)+1)}. }[/math]
First Montgomery-Vaughan large sieve inequality
The first Montgomery-Vaughan large sieve inequality [MV1973, Theorem 1] gives
- [math]\displaystyle{ k_0 (\sum_{q \leq Q} \frac{\mu^2(q)}{\phi(q)}) \leq H(k_0)+1 + Q^2 }[/math]
for any [math]\displaystyle{ Q \gt 1 }[/math], which is a parameter that one can optimise over (the optimal value is comparable to [math]\displaystyle{ H(k_0)^{1/2} }[/math]).
Second Montgomery-Vaughan large sieve inequality
The second Montgomery-Vaughan large sieve inequality [MV1973, Corollary 1] gives
- [math]\displaystyle{ k_0 \leq (\sum_{q \leq z} (H(k_0)+1+cqz)^{-1} \mu(q)^2 \prod_{p|q} \frac{1}{p-1})^{-1} }[/math]
for any [math]\displaystyle{ z \gt 1 }[/math], which is a parameter similar to [math]\displaystyle{ Q }[/math] in the previous inequality, and [math]\displaystyle{ c }[/math] is an absolute constant. In the original paper of Montgomery and Vaughan, [math]\displaystyle{ c }[/math] was taken to be [math]\displaystyle{ 3/2 }[/math]; this was then reduced to [math]\displaystyle{ \sqrt{22}/\pi }[/math] [B1995, p.162] and then to [math]\displaystyle{ 3.2/\pi }[/math] [M1978]. It is conjectured that [math]\displaystyle{ c }[/math] can be taken to in fact be [math]\displaystyle{ 1 }[/math].
Benchmarks
[math]\displaystyle{ k_0 }[/math] | 3,500,000 | 34,429 | 26,024 |
---|---|---|---|
Upper bounds | |||
Zhang sieve | 59,093,364 | 411,932 | 303,558 |
Hensley-Richards sieve | 57,554,086 | 402,790 | 297,454 |
Asymmetric Hensley-Richards | 401,700 | 297,076 | |
Schinzel sieve | |||
Best known tuple | 57,554,086 | 386,750 | 285,232 |
Lower bounds | |||
MV with [math]\displaystyle{ c=1 }[/math] | 234,642 | 172,924 | |
MV with [math]\displaystyle{ c=3.2/\pi }[/math] | 234,322 | 172,719 | |
MV with [math]\displaystyle{ c=\sqrt{22}/\pi }[/math] | 227,078 | 167,860 | |
Second Montgomery-Vaughan | 226,987 | 167,793 | |
Brun-Titchmarsh | 211,046 | 155,555 | |
First Montgomery-Vaughan | 196,729 | 145,711 |