Finding optimal k0 values: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Xfxie (talk | contribs)
Xfxie (talk | contribs)
Line 94: Line 94:
| 80/3
| 80/3
| 2
| 2
| -
| 1.0699851E-02
| -
| 5.0521044E-05
| -
| 8.0398983E-03
| -
| 260.2624368
| -
| 720
| -
| 719
| -
| 1.04E-06
| -
| 4.98E-09
| -
| 4.33E-08
| -
| -5.5687E-06
|-
|-
|600/7
|600/7
| 180/7
| 180/7
| 4
| 4
| -
| 1.1639206E-02
| -
| 9.1536798E-05
| -
| 8.3866560E-03
| -
| 194.5246551
| -
| 632
| -
| 630
| -
| 3.01E-06
| -
| 3.40E-08
| -
| 9.89E-08
| -
| -5.0940E-06
|}
|}

Revision as of 09:09, 1 September 2013

This is a sub-page for the Polymath8 project "bounded gaps between primes".

Benchmarks

[math]\displaystyle{ c_{\varpi} }[/math] [math]\displaystyle{ ~c_{\delta}~ }[/math] [math]\displaystyle{ ~i~ }[/math] [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ ~\delta~ }[/math] [math]\displaystyle{ ~\delta'~ }[/math] [math]\displaystyle{ ~A~ }[/math] [math]\displaystyle{ k_0^{opt} }[/math] [math]\displaystyle{ k_0^{*} }[/math] [math]\displaystyle{ ~\kappa_1~ }[/math] [math]\displaystyle{ ~\kappa_2~ }[/math] [math]\displaystyle{ ~\kappa_3~ }[/math] objective
348 68 1 2.8733352E-03 1.1670730E-06 1.4955362E-03 2559.258877 5447 5446 5.63E-09 1.52E-12 8.54E-11 -1.1881E-06
168 48 2 5.9495534E-03 9.8965035E-06 3.7117059E-03 757.8242621 1783 1781 1.58E-07 3.24E-10 3.65E-09 -5.9684E-06
148 33 1 6.7542244E-03 1.1357314E-05 4.7101572E-03 626.6135921 1466 1465 8.79E-08 8.57E-11 3.63E-09 -2.2867E-06
140 32 1 7.1398444E-03 1.3180858E-05 5.0540952E-03 577.7849932 1346 1345 1.10E-07 1.22E-10 4.75E-09 -6.7812E-06
116 30 1 8.6150249E-03 2.1903801E-05 6.4285376E-03 408.9674914 1007 1006 2.30E-07 3.80E-10 1.17E-08 -6.2560E-06
108 30 1 9.2518776E-03 2.6573843E-05 7.0318847E-03 359.6376563 902 901 3.08E-07 6.00E-10 1.76E-08 -1.0924E-05
280/3 80/3 2 1.0699851E-02 5.0521044E-05 8.0398983E-03 260.2624368 720 719 1.04E-06 4.98E-09 4.33E-08 -5.5687E-06
600/7 180/7 4 1.1639206E-02 9.1536798E-05 8.3866560E-03 194.5246551 632 630 3.01E-06 3.40E-08 9.89E-08 -5.0940E-06