Finding optimal k0 values: Difference between revisions

From Polymath Wiki
Jump to navigationJump to search
Xfxie (talk | contribs)
No edit summary
Xfxie (talk | contribs)
No edit summary
Line 257: Line 257:
| 4.0614E-05
| 4.0614E-05
|}
|}
== Lower Bounds ==

Revision as of 08:01, 3 September 2013

This is a sub-page for the Polymath8 project "bounded gaps between primes".

  • [math]\displaystyle{ ~k_0~ }[/math] is a quantity such that every admissible [math]\displaystyle{ ~k_0 }[/math]-tuple has infinitely many translates which each contain at least two primes. Would like to be as small as possible.
  • [math]\displaystyle{ \text{MPZ}^{(i)}[\varpi,\delta] }[/math] holds for some combinations of [math]\displaystyle{ c_\varpi, c_\delta }[/math], and [math]\displaystyle{ ~i~ }[/math] values, where [math]\displaystyle{ i \ge 1 }[/math] means [math]\displaystyle{ ~i }[/math]-tuply densely divisible, [math]\displaystyle{ c_\varpi \gt 0 }[/math] and [math]\displaystyle{ ~c_\delta \gt 0~ }[/math] are constants in the constraint on [math]\displaystyle{ \varpi }[/math] and [math]\displaystyle{ ~\delta~ }[/math], such that [math]\displaystyle{ c_{\varpi}\varpi+c_{\delta}\delta\lt 1 }[/math].

Benchmarks

Optimal results at [math]\displaystyle{ k_0 = k_0^{opt} }[/math] for some instances of [math]\displaystyle{ c_\varpi, c_\delta, i }[/math] values.
Instance [math]\displaystyle{ k_0^{*} }[/math] [math]\displaystyle{ ~k_0~ }[/math] Parameters Error Terms Objective
[math]\displaystyle{ c_{\varpi} }[/math] [math]\displaystyle{ ~c_{\delta}~ }[/math] [math]\displaystyle{ ~i~ }[/math] [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ ~\delta~ }[/math] [math]\displaystyle{ ~\delta'~ }[/math] [math]\displaystyle{ ~A~ }[/math] [math]\displaystyle{ ~\kappa_1~ }[/math] [math]\displaystyle{ ~\kappa_2~ }[/math] [math]\displaystyle{ ~\kappa_3~ }[/math]
348 68 1 5446 5447 2.8733352E-03 1.1670730E-06 1.4955362E-03 2559.258877 5.63E-09 1.52E-12 8.54E-11 -1.1881E-06
168 48 2 1781 1783 5.9495534E-03 9.8965035E-06 3.7117059E-03 757.8242621 1.58E-07 3.24E-10 3.65E-09 -5.9684E-06
148 33 1 1465 1466 6.7542244E-03 1.1357314E-05 4.7101572E-03 626.6135921 8.79E-08 8.57E-11 3.63E-09 -2.2867E-06
140 32 1 1345 1346 7.1398444E-03 1.3180858E-05 5.0540952E-03 577.7849932 1.10E-07 1.22E-10 4.75E-09 -6.7812E-06
116 30 1 1006 1007 8.6150249E-03 2.1903801E-05 6.4285376E-03 408.9674914 2.30E-07 3.80E-10 1.17E-08 -6.2560E-06
108 30 1 901 902 9.2518776E-03 2.6573843E-05 7.0318847E-03 359.6376563 3.08E-07 6.00E-10 1.76E-08 -1.0924E-05
280/3 80/3 2 719 720 1.0699851E-02 5.0521044E-05 8.0398983E-03 260.2624368 1.04E-06 4.98E-09 4.33E-08 -5.5687E-06
600/7 180/7 4 630 632 1.1639206E-02 9.1536798E-05 8.3866560E-03 194.5246551 3.01E-06 3.40E-08 9.89E-08 -5.0940E-06
"Failure" results at [math]\displaystyle{ k_0=(k_0^{opt}-1) }[/math] for some instances of [math]\displaystyle{ c_\varpi, c_\delta, i }[/math] values.
Instance [math]\displaystyle{ k_0^{*} }[/math] [math]\displaystyle{ ~k_0~ }[/math] Parameters Error Terms Objective
[math]\displaystyle{ c_{\varpi} }[/math] [math]\displaystyle{ ~c_{\delta}~ }[/math] [math]\displaystyle{ ~i~ }[/math] [math]\displaystyle{ \varpi }[/math] [math]\displaystyle{ ~\delta~ }[/math] [math]\displaystyle{ ~\delta'~ }[/math] [math]\displaystyle{ ~A~ }[/math] [math]\displaystyle{ ~\kappa_1~ }[/math] [math]\displaystyle{ ~\kappa_2~ }[/math] [math]\displaystyle{ ~\kappa_3~ }[/math]
348 68 1 5446 5446 1.1666317E-02 1.1659847E-06 1.4881806E-03 2558.927043 6.15E-09 1.81E-12 1.34E-10 1.7560E-07
168 48 2 1781 1782 1.1663695E-02 9.9043741E-06 3.7130742E-03 757.3673135 1.59E-07 3.26E-10 3.21E-09 2.5064E-06
148 33 1 1465 1465 1.1663259E-02 1.1359571E-05 4.7002144E-03 625.1479808 9.16E-08 9.27E-11 3.28E-09 9.3639E-06
140 32 1 1345 1345 1.1662709E-02 1.3191723E-05 5.0558681E-03 568.1690873 1.11E-07 1.23E-10 4.94E-10 6.6030E-06
116 30 1 1006 1006 1.1660089E-02 2.1925014E-05 6.4287825E-03 408.5511082 2.33E-07 3.89E-10 1.24E-08 1.5183E-05
108 30 1 901 901 1.1658682E-02 2.6615167E-05 7.0404135E-03 359.5845846 3.08E-07 5.97E-10 1.68E-08 1.4703E-05
280/3 80/3 2 719 719 1.1651479E-02 5.0626919E-05 8.0520479E-03 259.8370595 1.04E-06 4.96E-09 4.46E-08 3.1365E-05
600/7 180/7 4 630 631 1.1639134E-02 9.1775130E-05 8.3989836E-03 193.9881059 3.02E-06 3.40E-08 1.00E-07 4.0614E-05

Lower Bounds