Finding optimal k0 values
From Polymath Wiki
This is a sub-page for the Polymath8 project "bounded gaps between primes".
Benchmarks
[math]\displaystyle{ c_{\varpi} }[/math] | [math]\displaystyle{ ~c_{\delta}~ }[/math] | [math]\displaystyle{ ~i~ }[/math] | [math]\displaystyle{ \varpi }[/math] | [math]\displaystyle{ ~\delta~ }[/math] | [math]\displaystyle{ ~\delta'~ }[/math] | [math]\displaystyle{ ~A~ }[/math] | [math]\displaystyle{ k_0^{opt} }[/math] | [math]\displaystyle{ k_0^{*} }[/math] | [math]\displaystyle{ ~\kappa_1~ }[/math] | [math]\displaystyle{ ~\kappa_2~ }[/math] | [math]\displaystyle{ ~\kappa_3~ }[/math] | objective |
---|---|---|---|---|---|---|---|---|---|---|---|---|
348 | 68 | 1 | 2.8733352E-03 | 1.1670730E-06 | 1.4955362E-03 | 2559.258877 | 5447 | 5446 | 5.63E-09 | 1.52E-12 | 8.54E-11 | -1.1881E-06 |
168 | 48 | 2 | 5.9495534E-03 | 9.8965035E-06 | 3.7117059E-03 | 757.8242621 | 1783 | 1781 | 1.58E-07 | 3.24E-10 | 3.65E-09 | -5.9684E-06 |
148 | 33 | 1 | 6.7542244E-03 | 1.1357314E-05 | 4.7101572E-03 | 626.6135921 | 1466 | 1465 | 8.79E-08 | 8.57E-11 | 3.63E-09 | -2.2867E-06 |
140 | 32 | 1 | 7.1398444E-03 | 1.3180858E-05 | 5.0540952E-03 | 577.7849932 | 1346 | 1345 | 1.10E-07 | 1.22E-10 | 4.75E-09 | -6.7812E-06 |
116 | 30 | 1 | 8.6150249E-03 | 2.1903801E-05 | 6.4285376E-03 | 408.9674914 | 1007 | 1006 | 2.30E-07 | 3.80E-10 | 1.17E-08 | -6.2560E-06 |
108 | 30 | 1 | 9.2518776E-03 | 2.6573843E-05 | 7.0318847E-03 | 359.6376563 | 902 | 901 | 3.08E-07 | 6.00E-10 | 1.76E-08 | -1.0924E-05 |
280/3 | 80/3 | 2 | - | - | - | - | - | - | - | - | - | - |
600/7 | 180/7 | 4 | - | - | - | - | - | - | - | - | - | - |