Finding narrow admissible tuples
For any natural number [math]\displaystyle{ k_0 }[/math], an admissible [math]\displaystyle{ k_0 }[/math]-tuple is a finite set [math]\displaystyle{ {\mathcal H} }[/math] of integers of cardinality [math]\displaystyle{ k_0 }[/math] which avoids at least one residue class modulo [math]\displaystyle{ p }[/math] for each prime [math]\displaystyle{ p }[/math]. (Note that one only needs to check those primes [math]\displaystyle{ p }[/math] of size at most [math]\displaystyle{ k_0 }[/math], so this is a finitely checkable condition. Let [math]\displaystyle{ H(k_0) }[/math] denote the minimal diameter [math]\displaystyle{ \max {\mathcal H} - \min {\mathcal H} }[/math] of an admissible [math]\displaystyle{ k_0 }[/math]-tuple. As part of the Polymath8 project, we would like to find as good an upper bound on [math]\displaystyle{ H(k_0) }[/math] as possible for given values of [math]\displaystyle{ k_0 }[/math]. (To a lesser extent, we would also be interested in lower bounds on this quantity.
Upper bounds
Upper bounds are primarily constructed through various "sieves" that delete one residue class modulo [math]\displaystyle{ p }[/math] from an interval for a lot of primes [math]\displaystyle{ p }[/math]. Examples of sieves, in roughly increasing order of efficiency, are listed below.
Zhang sieve
The Zhang sieve uses the tuple
- [math]\displaystyle{ {\mathcal H} = \{p_{m+1}, \ldots, p_{m+k_0}\} }[/math]
where [math]\displaystyle{ m }[/math] is taken to optimize the diameter [math]\displaystyle{ p_{m+k_0}-p_{m+1} }[/math] while staying admissible (in practice, this basically means making [math]\displaystyle{ m }[/math] as small as possible). Certainly any [math]\displaystyle{ m }[/math] with [math]\displaystyle{ p_{m+1} \gt k_0 }[/math] works, but this is not optimal.
Hensley-Richards sieve
The Hensley-Richard sieve uses the tuple
- [math]\displaystyle{ {\mathcal H} = \{-p_{m+\lfloor k_0/2\rfloor - 1}, \ldots, -p_{m+1}, -1, +1, p_{m+1},\ldots, p_{m+\lfloor k_0+1/2-1}\} }[/math]
where m is again optimised to minimize the diameter while staying admissible.
Asymmetric Hensley-Richards sieve
The asymmetric Hensley-Richard sieve uses the tuple
- [math]\displaystyle{ {\mathcal H} = \{-p_{m+\lfloor k_0/2\rfloor - 1-i}, \ldots, -p_{m+1}, -1, +1, p_{m+1},\ldots, p_{m+\lfloor k_0+1/2-1+i}\} }[/math]
where [math]\displaystyle{ i }[/math] is an integer and [math]\displaystyle{ i,m }[/math] are optimised to minimize the diameter while staying admissible.
Schinzel sieve
Greedy-greedy sieve
Further refinements
Lower bounds
There is a substantial amount of literature on bounding the quantity [math]\displaystyle{ \pi(x+y)-\pi(x) }[/math], the number of primes in a shifted interval [math]\displaystyle{ [x+1,x+y] }[/math], where [math]\displaystyle{ x,y }[/math] are natural numbers. As a general rule, whenever a bound of the form
- [math]\displaystyle{ \pi(x+y) - \pi(x) \leq F(y) }[/math] (*)
is established for some function [math]\displaystyle{ F(y) }[/math] of [math]\displaystyle{ y }[/math], the method of proof also gives a bound of the form
- [math]\displaystyle{ k_0 \leq F( H(k_0)+1 ). }[/math] (**)
Indeed, if one assumes the prime tuples conjecture, any admissible [math]\displaystyle{ k_0 }[/math]-tuple of diameter [math]\displaystyle{ H }[/math] can be translated into an interval of the form [math]\displaystyle{ [x+1,x+H+1] }[/math] for some [math]\displaystyle{ x }[/math]. In the opposite direction, all known bounds of the form (*) proceed by using the fact that for [math]\displaystyle{ x\gt y }[/math], the set of primes between [math]\displaystyle{ x+1 }[/math] and [math]\displaystyle{ x+y }[/math] is admissible, so the method of proof of (*) invariably also gives (**) as well.
Examples of lower bounds are as follows;
Brun-Titchmarsh inequality
The Brun-Titchmarsh theorem gives
- [math]\displaystyle{ \pi(x+y) - \pi(x) \leq (1 + o(1)) \frac{2y}{\log y} }[/math]
which then gives the lower bound
- [math]\displaystyle{ H(k_0) \geq (\frac{1}{2}-o(1)) k_0 \log k_0 }[/math].
Montgomery and Vaughan deleted the o(1) error from the Brun-Titchmarsh theorem [MV1973, Corollary 2], giving the more precise inequality
- [math]\displaystyle{ k_0 \leq 2 \frac{H(k_0)+1}{\log (H(k_0)+1)}. }[/math]
First Montgomery-Vaughan large sieve inequality
The first Montgomery-Vaughan large sieve inequality [MV1973, Theorem 1] gives
- [math]\displaystyle{ k_0 (\sum_{q \leq Q} \frac{\mu^2(q)}{\phi(q)}) \leq H(k_0)+1 + Q^2 }[/math]
for any [math]\displaystyle{ Q \gt 1 }[/math], which is a parameter that one can optimise over (the optimal value is comparable to [math]\displaystyle{ H(k_0)^{1/2} }[/math]).
Second Montgomery-Vaughan large sieve inequality
The second Montgomery-Vaughan large sieve inequality [MV1973, Corollary 1] gives
- [math]\displaystyle{ k_0 \leq (\sum_{q \leq z} (H(k_0)+1+cqz)^{-1} \mu(q)^2 \prod_{p|q} \frac{1}{p-1})^{-1} }[/math]
for any [math]\displaystyle{ z \gt 1 }[/math], which is a parameter similar to [math]\displaystyle{ Q }[/math] in the previous inequality, and [math]\displaystyle{ c }[/math] is an absolute constant. In the original paper of Montgomery and Vaughan, [math]\displaystyle{ c }[/math] was taken to be [math]\displaystyle{ 3/2 }[/math]; this was then reduced to [math]\displaystyle{ \sqrt{22}/\pi }[/math] [B1995, p.162] and then to [math]\displaystyle{ 3.2/\pi }[/math] [M1978]. It is conjectured that [math]\displaystyle{ c }[/math] can be taken to in fact be [math]\displaystyle{ 1 }[/math].
Benchmarks
[math]\displaystyle{ k_0 }[/math] | 3,500,000 | 34,429 | 26,024 |
---|---|---|---|
Upper bounds | |||
Zhang sieve | 59,093,364 | 411,932 | 303,558 |
Hensley-Richards sieve | 57,554,086 | 402,790 | 297,454 |
Asymmetric Hensley-Richards | 401,700 | 297,076 | |
Lower bounds | |||
MV with [math]\displaystyle{ c=1 }[/math] | 234,642 | ||
MV with [math]\displaystyle{ c=3.2/\pi }[/math] | 234,322 | ||
MV with [math]\displaystyle{ c=\sqrt{22}/\pi }[/math] | 227,078 | ||
Second Montgomery-Vaughan | 226,987 | ||
Brun-Titchmarsh | 211,046 | ||
First Montgomery-Vaughan | 196,729 |