Bounded gaps between primes

From Polymath Wiki
Revision as of 09:31, 25 June 2013 by Hannes (talk | contribs) (Undo revision 8087 by Andres Caicedo (Talk) (140 varpi + 32 delta < 1 not yet confirmed))
Jump to navigationJump to search

World records

  • [math]\displaystyle{ H }[/math] is a quantity such that there are infinitely many pairs of consecutive primes of distance at most [math]\displaystyle{ H }[/math] apart. Would like to be as small as possible (this is a primary goal of the Polymath8 project).
  • [math]\displaystyle{ k_0 }[/math] is a quantity such that every admissible [math]\displaystyle{ k_0 }[/math]-tuple has infinitely many translates which each contain at least two primes. Would like to be as small as possible. Improvements in [math]\displaystyle{ k_0 }[/math] lead to improvements in [math]\displaystyle{ H }[/math]. (The relationship is roughly of the form [math]\displaystyle{ H \sim k_0 \log k_0 }[/math]; see the page on finding narrow admissible tuples.)
  • [math]\displaystyle{ \varpi }[/math] is a technical parameter related to a specialized form of the Elliott-Halberstam conjecture. Would like to be as large as possible. Improvements in [math]\displaystyle{ \varpi }[/math] lead to improvements in [math]\displaystyle{ k_0 }[/math]. (The relationship is roughly of the form [math]\displaystyle{ k_0 \sim \varpi^{-3/2} }[/math]; there is an active discussion on optimising these improvements here.) In more recent work, the single parameter [math]\displaystyle{ \varpi }[/math] is replaced by a pair [math]\displaystyle{ (\varpi,\delta) }[/math] (in previous work we had [math]\displaystyle{ \delta=\varpi }[/math]). Discussion on improving the values of [math]\displaystyle{ (\varpi,\delta) }[/math] is currently being held here. In this table, infinitesimal losses in [math]\displaystyle{ \delta,\varpi }[/math] are ignored.
Date [math]\displaystyle{ \varpi }[/math] or [math]\displaystyle{ (\varpi,\delta) }[/math] [math]\displaystyle{ k_0 }[/math] [math]\displaystyle{ H }[/math] Comments
14 May 1/1,168 (Zhang) 3,500,000 (Zhang) 70,000,000 (Zhang) All subsequent work is based on Zhang's breakthrough paper.
21 May 63,374,611 (Lewko) Optimises Zhang's condition [math]\displaystyle{ \pi(H)-\pi(k_0) \gt k_0 }[/math]; can be reduced by 1 by parity considerations
28 May 59,874,594 (Trudgian) Uses [math]\displaystyle{ (p_{m+1},\ldots,p_{m+k_0}) }[/math] with [math]\displaystyle{ p_{m+1} \gt k_0 }[/math]
30 May 59,470,640 (Morrison)

58,885,998? (Tao)

59,093,364 (Morrison)

57,554,086 (Morrison)

Uses [math]\displaystyle{ (p_{m+1},\ldots,p_{m+k_0}) }[/math] and then [math]\displaystyle{ (\pm 1, \pm p_{m+1}, \ldots, \pm p_{m+k_0/2-1}) }[/math] following [HR1973], [HR1973b], [R1974] and optimises in m
31 May 2,947,442 (Morrison)

2,618,607 (Morrison)

48,112,378 (Morrison)

42,543,038 (Morrison)

42,342,946 (Morrison)

Optimizes Zhang's condition [math]\displaystyle{ \omega\gt 0 }[/math], and then uses an improved bound on [math]\displaystyle{ \delta_2 }[/math]
1 Jun 42,342,924 (Tao) Tiny improvement using the parity of [math]\displaystyle{ k_0 }[/math]
2 Jun 866,605 (Morrison) 13,008,612 (Morrison) Uses a further improvement on the quantity [math]\displaystyle{ \Sigma_2 }[/math] in Zhang's analysis (replacing the previous bounds on [math]\displaystyle{ \delta_2 }[/math])
3 Jun 1/1,040? (v08ltu) 341,640 (Morrison) 4,982,086 (Morrison)

4,802,222 (Morrison)

Uses a different method to establish [math]\displaystyle{ DHL[k_0,2] }[/math] that removes most of the inefficiency from Zhang's method.
4 Jun 1/224?? (v08ltu)

1/240?? (v08ltu)

4,801,744 (Sutherland)

4,788,240 (Sutherland)

Uses asymmetric version of the Hensley-Richards tuples
5 Jun 34,429? (Paldi/v08ltu)

34,429? (Tao/v08ltu/Harcos)

4,725,021 (Elsholtz)

4,717,560 (Sutherland)

397,110? (Sutherland)

4,656,298 (Sutherland)

389,922 (Sutherland)

388,310 (Sutherland)

388,284 (Castryck)

388,248 (Sutherland)

388,188 (Sutherland)

387,982 (Castryck)

387,974 (Castryck)

[math]\displaystyle{ k_0 }[/math] bound uses the optimal Bessel function cutoff. Originally only provisional due to neglect of the kappa error, but then it was confirmed that the kappa error was within the allowed tolerance.

[math]\displaystyle{ H }[/math] bound obtained by a hybrid Schinzel/greedy (or "greedy-greedy") sieve

6 Jun (1/488,3/9272) (Pintz)

1/552 (Pintz, Tao)

60,000* (Pintz)

52,295* (Peake)

11,123 (Tao)

387,960 (Angelveit)

387,910 (Sutherland)

387,904 (Angeltveit)

387,814 (Sutherland)

387,766 (Sutherland)

387,754 (Sutherland)

387,620 (Sutherland)

768,534* (Pintz)

Improved [math]\displaystyle{ H }[/math]-bounds based on experimentation with different residue classes and different intervals, and randomized tie-breaking in the greedy sieve.
7 Jun (1/538, 1/660) (v08ltu)

(1/538, 31/20444) (v08ltu)

(1/942, 19/27004) (v08ltu)

[math]\displaystyle{ 207 \varpi + 43\delta \lt \frac{1}{4} }[/math] (v08ltu/Green)

11,018 (Tao)

10,721 (v08ltu)

10,719 (v08ltu)

25,111 (v08ltu)

26,024? (vo8ltu)

113,520? (Angeltveit)

109,314? (Angeltveit/Sutherland)

707,328* (Sutherland)

108,990 (Sutherland)

113,462* (Sutherland)

112,302* (Sutherland)

112,272* (Sutherland)

116,386* (Sun)

108,978 (Sutherland)

108,634 (Sutherland)

108,632 (Castryck)

108,600 (Sutherland)

108,570 (Castryck)

108,556 (Sutherland)

108,550 (xfxie)

275,424 (Sutherland)

108,540 (Sutherland)

275,418 (Sutherland)

275,404 (Sutherland)

275,292 (Castryck-Sutherland)

275,262 (Castryck-pedant-Sutherland)

275,388* (xfxie-Sutherland)

275,126 (Castryck-pedant-Sutherland)

274,970 (Castryck-pedant-Sutherland)

275,208* (xfxie)

387,534 (pedant-Sutherland)

Many of the results ended up being retracted due to a number of issues found in the most recent preprint of Pintz.
Jun 8 286,224 (Sutherland)

285,810 (Sutherland)

286,216 (xfxie-Sutherland)

386,750* (Sutherland)

285,752 (pedant-Sutherland)

285,456 (Sutherland)

values of [math]\displaystyle{ \varpi,\delta,k_0 }[/math] now confirmed; most tuples available on dropbox. New bounds on [math]\displaystyle{ H }[/math] obtained via iterated merging using a randomized greedy sieve.
Jun 9 181,000*? (Pintz) 2,530,338*? (Pintz)

285,278 (Sutherland/xfxie)

285,272 (Sutherland)

285,248 (Sutherland)

285,246 (xfxie-Sutherland)

285,232 (Sutherland)

New bounds on [math]\displaystyle{ H }[/math] obtained by interleaving iterated merging with local optimizations.
Jun 10 23,283? (Harcos/v08ltu) 285,210 (Sutherland)

253,118 (xfxie)

386,532* (Sutherland)

253,048 (Sutherland)

252,990 (Sutherland)

252,976 (Sutherland)

More efficient control of the [math]\displaystyle{ \kappa }[/math] error using the fact that numbers with no small prime factor are usually coprime
Jun 11 252,804 (Sutherland)

2,345,896* (Sutherland)

More refined local "adjustment" optimizations, as detailed here.

An issue with the [math]\displaystyle{ k_0 }[/math] computation has been discovered, but is in the process of being repaired.

Jun 12 22,951 (Tao/v08ltu)

22,949 (Harcos)

249,180 (Castryck)

249,046 (Sutherland)

249,034 (Sutherland)

Improved bound on [math]\displaystyle{ k_0 }[/math] avoids the technical issue in previous computations.
Jun 13

248,970 (Sutherland)

248,910 (Sutherland)

Jun 14 248,898 (Sutherland)
Jun 15 [math]\displaystyle{ 87\varpi+17\delta \lt \frac{1}{4} }[/math]? (Tao) 6,330? (v08ltu)

6,329? (Harcos)

6,329 (v08ltu)

60,830? (Sutherland)

60,812? (Sutherland)

60,764 (xfxie)

60,772* (xfxie)

60,760 (xfxie)

Taking more advantage of the [math]\displaystyle{ \alpha }[/math] convolution in the Type III sums
Jun 16 [math]\displaystyle{ 87\varpi+17\delta \lt \frac{1}{4} }[/math] (v08ltu)

155\varpi+31\delta < 1 and 11\varpi + 3\delta < \frac{1}{20} (Tao)

3,405 (v08ltu) 60,760* (Sutherland)

60,756 (Sutherland)

60,754 (xfxie)

60,744 (Sutherland)

30,610* (Sutherland)

30,606 (Engelsma)

30,600 (Sutherland)

Attempting to make the Weyl differencing more efficient; unfortunately, it did not work
Jun 18 5,937? (Pintz/Tao/v08ltu)

5,672? (v08ltu)

5,459? (v08ltu)

5,454? (v08ltu)

5,453? (v08ltu)

60,740 (xfxie)

60,732 (Sutherland)

60,726 (xfxie-Sutherland)

58,866? (Sun)

56,660? (Sutherland)

56,640? (Sutherland)

53,898? (Sun)

53,842? (Sun)

A new truncated sieve of Pintz virtually eliminates the influence of [math]\displaystyle{ \delta }[/math]
Jun 19 5,455? (v08ltu)

5,453? (v08ltu)

5,452? (v08ltu)

53,774? (Sun)

51,544? (Sutherland)

51,540? (xfxie/Sutherland)

51,532? (Sutherland)

51,526? (Sutherland)

53,672*? (Sun)

51,520? (Sutherland/Hou-Sun)

Some typos in [math]\displaystyle{ \kappa_3 }[/math] estimation had placed the 5,454 and 5,453 values of [math]\displaystyle{ k_0 }[/math] into doubt; however other refinements have counteracted this
Jun 20 [math]\displaystyle{ 178\varpi + 52\delta \lt 1 }[/math]? (Tao)

[math]\displaystyle{ 148\varpi + 33\delta \lt 1 }[/math]? (Tao)

Replaced "completion of sums + Weil bounds" in estimation of incomplete Kloosterman-type sums by "Fourier transform + Weyl differencing + Weil bounds", taking advantage of factorability of moduli
Jun 21 [math]\displaystyle{ 148\varpi + 33\delta \lt 1 }[/math] (v08ltu) 1,470 (v08ltu)

1,467 (v08ltu)

12,042 (Engelsma)

12,012 (Engelsma)

Systematic tables of tuples of small length have been set up here and here
Jun 22 1,466 (Harcos/v08ltu) 12,006 (Engelsma) Slight improvement in the [math]\displaystyle{ \tilde \theta }[/math] parameter in the Pintz sieve; unfortunately, it does not seem to currently give an actual improvement to the optimal value of [math]\displaystyle{ k_0 }[/math]
Jun 23 1,466 (Paldi/Harcos) 12,006 (Engelsma) An improved monotonicity formula for [math]\displaystyle{ G_{k_0-1,\tilde \theta} }[/math] reduces [math]\displaystyle{ \kappa_3 }[/math] somewhat
Jun 24 [math]\displaystyle{ 101\varpi + 21\delta \le 3/4 }[/math]? (v08ltu)

[math]\displaystyle{ 140\varpi + 32 \delta \lt 1 }[/math]? (Tao)

1/88?? (Tao)

1/74?? (Tao)

1,268? (v08ltu) 10,206? (Engelsma) A theoretical gain from rebalancing the exponents in the Type I exponential sum estimates
Jun 25 1,346? (Hannes) 10,876? (Engelsma)


Legend:

  1. ? - unconfirmed or conditional
  2. ?? - theoretical limit of an analysis, rather than a claimed record
  3. * - is majorized by an earlier but independent result
  4. strikethrough - values relied on a computation that has now been retracted

See also the article on Finding narrow admissible tuples for benchmark values of [math]\displaystyle{ H }[/math] for various key values of [math]\displaystyle{ k_0 }[/math].

Polymath threads

Code and data

Errata

Page numbers refer to the file linked to for the relevant paper.

  1. Errata for Zhang's "Bounded gaps between primes"
    1. Page 5: In the first display, [math]\displaystyle{ \mathcal{E} }[/math] should be multiplied by [math]\displaystyle{ \mathcal{L}^{2k_0+2l_0} }[/math], because [math]\displaystyle{ \lambda(n)^2 }[/math] in (2.2) can be that large, cf. (2.4).
    2. Page 14: In the final display, the constraint [math]\displaystyle{ (n,d_1=1 }[/math] should be [math]\displaystyle{ (n,d_1)=1 }[/math].
    3. Page 35: In the display after (10.5), the subscript on [math]\displaystyle{ {\mathcal J}_i }[/math] should be deleted.
    4. Page 36: In the third display, a factor of [math]\displaystyle{ \tau(q_0r)^{O(1)} }[/math] may be needed on the right-hand side (but is ultimately harmless).
    5. Page 38: In the display after (10.14), [math]\displaystyle{ \xi(r,a;q_1,b_1;q_2,b_2;n,k) }[/math] should be [math]\displaystyle{ \xi(r,a;k;q_1,b_1;q_2,b_2;n) }[/math].
    6. Page 42: In (12.3), [math]\displaystyle{ B }[/math] should probably be 2.
    7. Page 47: In the third display after (13.13), the condition [math]\displaystyle{ l \in {\mathcal I}_i(h) }[/math] should be [math]\displaystyle{ l \in {\mathcal I}_i(sh) }[/math].
    8. Page 49: In the top line, a comma in [math]\displaystyle{ (h_1,h_2;,n_1,n_2) }[/math] should be deleted.
    9. Page 51: In the penultimate display, one of the two consecutive commas should be deleted.
    10. Page 54: Three displays before (14.17), [math]\displaystyle{ \bar{r_2}(m_1+m_2)q }[/math] should be [math]\displaystyle{ \bar{r_2}(m_1+m_2)/q }[/math].
  2. Errata for Motohashi-Pintz's "A smoothed GPY sieve"
    1. Page 31: The estimation of (5.14) by (5.15) does not appear to be justified. In the text, it is claimed that the second summation in (5.14) can be treated by a variant of (4.15); however, whereas (5.14) contains a factor of [math]\displaystyle{ (\log \frac{R}{|D|})^{2\ell+1} }[/math], (4.15) contains instead a factor of [math]\displaystyle{ (\log \frac{R/w}{|K|})^{2\ell+1} }[/math] which is significantly smaller (K in (4.15) plays a similar role to D in (5.14)). As such, the crucial gain of [math]\displaystyle{ \exp(-k\omega/3) }[/math] in (4.15) does not seem to be available for estimating the second sum in (5.14).
  3. Errata for Pintz's "A note on bounded gaps between primes", version 1. Update: the errata below have been corrected in subsequent versions of Pintz's paper.
    1. Page 7: In (2.39), the exponent of [math]\displaystyle{ 3a/2 }[/math] should instead be [math]\displaystyle{ -5a/2 }[/math] (it comes from dividing (2.38) by (2.37)). This impacts the numerics for the rest of the paper.
    2. Page 8: The "easy calculation" that the relative error caused by discarding all but the smooth moduli appears to be unjustified, as it relies on the treatment of (5.14) in Motohashi-Pintz which has the issue pointed out in 2.1 above.

Other relevant blog posts

MathOverflow

Wikipedia and other references

Recent papers and notes

Media

Bibliography

Additional links for some of these references (e.g. to arXiv versions) would be greatly appreciated.

  • [BFI1986] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. Acta Math. 156 (1986), no. 3-4, 203–251. MathSciNet Article
  • [BFI1987] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. II. Math. Ann. 277 (1987), no. 3, 361–393. MathSciNet Article
  • [BFI1989] Bombieri, E.; Friedlander, J. B.; Iwaniec, H. Primes in arithmetic progressions to large moduli. III. J. Amer. Math. Soc. 2 (1989), no. 2, 215–224. MathSciNet Article
  • [B1995] Jörg Brüdern, Einführung in die analytische Zahlentheorie, Springer Verlag 1995
  • [CJ2001] Clark, David A.; Jarvis, Norman C.; Dense admissible sequences. Math. Comp. 70 (2001), no. 236, 1713–1718 MathSciNet Article
  • [FI1981] Fouvry, E.; Iwaniec, H. On a theorem of Bombieri-Vinogradov type., Mathematika 27 (1980), no. 2, 135–152 (1981). MathSciNet Article
  • [FI1983] Fouvry, E.; Iwaniec, H. Primes in arithmetic progressions. Acta Arith. 42 (1983), no. 2, 197–218. MathSciNet Article
  • [FI1985] Friedlander, John B.; Iwaniec, Henryk, Incomplete Kloosterman sums and a divisor problem. With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. of Math. (2) 121 (1985), no. 2, 319–350. MathSciNet JSTOR Appendix
  • [GPY2009] Goldston, Daniel A.; Pintz, János; Yıldırım, Cem Y. Primes in tuples. I. Ann. of Math. (2) 170 (2009), no. 2, 819–862. arXiv MathSciNet
  • [GR1998] Gordon, Daniel M.; Rodemich, Gene Dense admissible sets. Algorithmic number theory (Portland, OR, 1998), 216–225, Lecture Notes in Comput. Sci., 1423, Springer, Berlin, 1998. MathSciNet Article
  • [GR1980] S. W. Graham, C. J. Ringrose, Lower bounds for least quadratic nonresidues. Analytic number theory (Allerton Park, IL, 1989), 269–309, Progr. Math., 85, Birkhäuser Boston, Boston, MA, 1990. MathSciNet Article
  • [HB1978] D. R. Heath-Brown, Hybrid bounds for Dirichlet L-functions. Invent. Math. 47 (1978), no. 2, 149–170. MathSciNet Article
  • [HB1986] D. R. Heath-Brown, The divisor function d3(n) in arithmetic progressions. Acta Arith. 47 (1986), no. 1, 29–56. MathSciNet Article
  • [HR1973] Hensley, Douglas; Richards, Ian, On the incompatibility of two conjectures concerning primes. Analytic number theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 123–127. Amer. Math. Soc., Providence, R.I., 1973. MathSciNet Article
  • [HR1973b] Hensley, Douglas; Richards, Ian, Primes in intervals. Acta Arith. 25 (1973/74), 375–391. MathSciNet Article
  • [MP2008] Motohashi, Yoichi; Pintz, János A smoothed GPY sieve. Bull. Lond. Math. Soc. 40 (2008), no. 2, 298–310. arXiv MathSciNet Article
  • [MV1973] Montgomery, H. L.; Vaughan, R. C. The large sieve. Mathematika 20 (1973), 119–134. MathSciNet Article
  • [M1978] Hugh L. Montgomery, The analytic principle of the large sieve. Bull. Amer. Math. Soc. 84 (1978), no. 4, 547–567. MathSciNet Article
  • [R1974] Richards, Ian On the incompatibility of two conjectures concerning primes; a discussion of the use of computers in attacking a theoretical problem. Bull. Amer. Math. Soc. 80 (1974), 419–438. MathSciNet Article
  • [S1961] Schinzel, A. Remarks on the paper "Sur certaines hypothèses concernant les nombres premiers". Acta Arith. 7 1961/1962 1–8. MathSciNet Article
  • [S2007] K. Soundararajan, Small gaps between prime numbers: the work of Goldston-Pintz-Yıldırım. Bull. Amer. Math. Soc. (N.S.) 44 (2007), no. 1, 1–18. MathSciNet Article arXiv