Maple calculations
The computations below were done in Maple 12. The parameters a, b, c, etc. are initially the Behrend sphere densities (e.g. a is the proportion of points with no 2s that lie in the set), but when one converts from the X's to the Y's, they are the Behrend sphere counts (i.e. a is now the number of points with no 2s that lie in the set).
- with(Optimization);
- A3 := 8*a + 12*b + 6*c + d;
- A4 := 16*a+32*b+24*c+8*d+e;
- A5 := 32*a+80*b+80*c+40*d+10*e+f;
- A6 := 64*a+192*b+240*c+160*d+60*e+12*f+g;
- A7 := 128*a+448*b+672*c+560*d+280*e+84*f+14*g+h;
- X1 := {2*a+b <= 2, b <= 1};
- X2 := {4*a+2*b+c <= 4, 2*a+c <= 2, 2*b+c <= 2, c <= 1};
- X3 := {op(X2), op(subs([a=b,b=c,c=d],X2)), 8*a+6*b+6*c+2*d<=11, 4*a+4*b+3*c+d<=6, 7*a+3*b+3*c+d <= 7, 4*a+6*c+2*d<=7, 5*a+3*c+d<=5, 2*a+d <= 2};
This comes from the linear inequalities obeyed by the 3D extremals.
- X4 := {op(X3), op(subs([a=b,b=c,c=d,d=e],X3)), op(subs([b=c,c=e],X2)), 4*16*a+32*b+2*24*c+4*8*d+16*e <= 96, 8*16*a+32*b+2*24*c+4*8*d+16*e <= 128};
The op(subs([b=c,c=e],X2) term here reflects the presence of diagonal 2D cubes such as xxyy in 4D with two appearances of each wildcard. The last two inequalities come from Peake.986
- Y4 := subs([a=a/16,b=b/32,c=c/24,d=d/8],X4);
- LPSolve(a+b+c+d+e,{op(Y4),e=1},assume=nonnegint,depthlimit=100,maximize);
[39, [a = 8, b = 16, c = 12, d = 2, e = 1]]
This, together with the bound [math]\displaystyle{ c'_4=43 }[/math], implies that [math]\displaystyle{ a+b+c+d+5e \leq 43 }[/math].
- LPSolve(a+b+c+d+e+d/2,{op(Y4),a+b+c+d+e<=40},assume=nonnegint,depthlimit=100,maximize);
[43, [a = 8, b = 16, c = 10, d = 6, e = 0]]
- LPSolve(a+b+c+d+e+d/2,{op(Y4),e=1},assume=nonnegint,depthlimit=100,maximize);
[40, [a = 8, b = 15, c = 12, d = 3, e = 1]]
This, together with the 4D data for 41+ point Moser sets, implies that [math]\displaystyle{ a+b+c+d+e+d/2+3e \leq 43 }[/math].
- X4 := {op(X4), A4+4*e <= 43, A4 + 4*d + 3*e <= 43};
- X5 := {op(X4), op(subs([a=b,b=c,c=d,d=e,e=f],X4)), 2*a+f <= 2, 4*a+b+2*c+2*d+e+f <= 11/2, 2*e+f <= 2, 4*a+4*c+2*d+e+f <= 6, 4*a+2*b+2*c+2*d+e+f <= 6, 7*a+b+2*c+2*d+e+f <= 7, 4*a+2*e+f <= 4, 8*a+4*c+2*d+e+f <= 8, 8*a+2*b+2*c+2*d+e+f <= 8, 4*a+2*b+2*d+2*e+f <= 6, 8*a+2*b+2*d+2*e+f <= 8};
The last ten inequalities here come from Peake.988
- X5 := {op(X5),8*a+4*b+2*c+2*d+4*e+2*f <=11,4*a+2*b+1*c+2*d+2*e+1*f <= 6,0*a+0*b+2*c+0*d+0*e+1*f <= 2,4*a+4*b+1*c+0*d+2*e+1*f <= 6,7*a+2*b+1*c+1*d+2*e+1*f <= 7,8*a+2*b+1*c+2*d+2*e+1*f <= 8,4*a+0*b+2*c+0*d+0*e+1*f <= 4,4*a+0*b+2*c+2*d+2*e+1*f <= 6,8*a+0*b+2*c+2*d+2*e+1*f <= 8,8*a+4*b+1*c+0*d+2*e+1*f <= 8};
These inequalities come from Peake.991
- Y5 := subs([a=a/32,b=b/80,c=c/80,d=d/40,e=e/10],X5);
- LPSolve(a+b+c+d+e+f,{op(Y5),f=1},assume=nonnegint,depthlimit=100,maximize);
[117, [a = 15, b = 40, c = 40, d = 20, e = 1, f = 1]]
This, together with the bound [math]\displaystyle{ c'_5=124 }[/math], implies that [math]\displaystyle{ a+b+c+d+e+f+7f \leq 124 }[/math].
- LPSolve(a+b+c+d+e+f,{op(Y5),e>=1},assume=nonnegint,depthlimit=100,maximize);
[124, [a = 6, b = 43, c = 74, d = 0, e = 1, f = 0]]
This gives an alternate proof that e=0 for 125-point Moser sets
- X5 := {op(X5), A5+7*f <= 124};
- X6 := {op(X5), op(subs([a=b,b=c,c=d,d=e,e=f,f=g],X5)), op(subs([b=d,c=g],X2)), op(subs([b=c,c=e,d=g],X3))};
The op(subs([b=c,c=e,d=g],X3) term here reflects the presence of diagonal 3D cubes such as xxyyzz in 6D with two appearances of each wildcard.
- X6 := {op(X6),8*a+4*b+2*c+2*e+4*f+2*g <= 11,0*a+0*b+2*c+0*e+0*f+1*g <= 2,4*a+2*b+1*c+2*e+2*f+1*g <= 6,7*a+2*b+1*c+1*e+2*f+1*g <= 7,4*a+0*b+2*c+0*e+0*f+1*g <= 4,4*a+0*b+2*c+2*e+2*f+1*g <= 6,8*a+0*b+2*c+2*e+2*f+1*g <= 8,8*a+2*b+1*c+2*e+2*f+1*g <= 8,4*a+4*b+1*c+0*e+2*f+1*g <= 6,8*a+4*b+1*c+0*e+2*f+1*g <= 8};
These come from xxxxyz diagonals, see Peake.911
:X6 := {op(X6),4*a+2*b+0*c+3*d+1*e+1*f+1*g <= 6,4*a+0*b+2*c+3*d+1*e+1*f+1*g <= 6,8*a+2*b+0*c+3*d+1*e+1*f+1*g <= 8,8*a+0*b+2*c+3*d+1*e+1*f+1*g <= 8,0*a+4*b+0*c+0*d+2*e+0*f+1*g <= 4,0*a+0*b+4*c+0*d+0*e+2*f+1*g <= 4,8*a+4*b+0*c+0*d+2*e+0*f+1*g <= 1,8*a+0*b+4*c+0*d+0*e+2*f+1*g <= 1};
These come from xxxyyz diagonals, see Peake.911
- Y6 := subs([a=a/64,b=b/192,c=c/240,d=d/160,e=e/60,f=f/12],X6);
- LPSolve(a+b+c+d+e+f+g,Y6,assume=nonnegint,depthlimit=500,maximize);
[361, [a = 28, b = 72, c = 166, d = 88, e = 5, f = 2, g = 0]]
- LPSolve(a+b+c+d+e+f+g,{op(Y6),g=1},assume=nonnegint,depthlimit=100,maximize);
[352, [a = 27, b = 96, c = 120, d = 80, e = 26, f = 4, g = 1]]
This implies that [math]\displaystyle{ a+b+c+d+e+f+g+9g \leq 361 }[/math].
- LPSolve(a+b+c+d+e+f+g,{op(Y6),e=0,f=0,g=0},assume=nonnegint,depthlimit=100,maximize);
[360, [a = 32, b = 64, c = 136, d = 128, e = 0, f = 0, g = 0]]
- X6 := {op(X6), A6+9*g <= 361};
- X7 := {op(X6), op(subs([a=b,b=c,c=d,d=e,e=f,f=g,g=h],X6)), 2*a+h <= 2};
- Y7 := subs([a=a/128,b=b/448,c=c/672,d=d/560,e=e/280,f=f/84,g=g/14],X7);
- LPSolve(a+b+c+d+e+f+g+h,Y7,assume=nonnegint,depthlimit=500,maximize);
[1073, [a = 64, b = 215, c = 298, d = 308, e = 168, f = 15, g = 5, h = 0]]
- LPSolve(a+b+c+d+e+f+g+h,{op(Y7),h=1},assume=nonnegint,depthlimit=100,maximize);
[1065, [a = 63, b = 212, c = 335, d = 280, e = 140, f = 30, g = 4, h = 1]]