Maple calculations

From Polymath Wiki
Jump to navigationJump to search

The computations below were done in Maple 12. The parameters a, b, c, etc. are initially the Behrend sphere densities (e.g. a is the proportion of points with no 2s that lie in the set), but when one converts from the X's to the Y's, they are the Behrend sphere counts (i.e. a is now the number of points with no 2s that lie in the set).

with(Optimization);
A3 := 8*a + 12*b + 6*c + d;
A4 := 16*a+32*b+24*c+8*d+e;
A5 := 32*a+80*b+80*c+40*d+10*e+f;
A6 := 64*a+192*b+240*c+160*d+60*e+12*f+g;
A7 := 128*a+448*b+672*c+560*d+280*e+84*f+14*g+h;
X1 := {2*a+b <= 2, b <= 1};
X2 := {4*a+2*b+c <= 4, 2*a+c <= 2, 2*b+c <= 2, c <= 1};
X3 := {op(X2), op(subs([a=b,b=c,c=d],X2)), 2*a+d <= 2};

These are the inequalities inherited from xy1, xy2, xxx cubes (averaged over symmetries)

Y3 := subs([a=a/8,b=b/12,c=c/6,d=d],X3);
LPSolve(a+b+c+d,Y3,assume=nonnegint,depthlimit=100,maximize);
[16, [a = 4, b = 6, c = 6, d = 0]]

This gives a proof of [math]\displaystyle{ c'_3 \leq 16 }[/math].

X3 := {op(X3), 8*a+6*b+6*c+2*d<=11, 4*a+4*b+3*c+d<=6, 7*a+3*b+3*c+d <= 7, 4*a+6*c+2*d<=7, 5*a+3*c+d<=5};

This comes from the linear inequalities obeyed by the 3D extremals.

X4 := {op(X3), op(subs([a=b,b=c,c=d,d=e],X3)), op(subs([b=c,c=e],X2))};

The op(subs([b=c,c=e],X2) term here reflects the presence of diagonal 2D cubes such as xxyy in 4D with two appearances of each wildcard.

X4 := {op(X4),4*a+2*b+3*c+2*d+e <= 6, 8*a+2*b+3*c+2*d+e <= 8};

These come from the xxyz slices, see Peake.986 or Peake.993

Y4 := subs([a=a/16,b=b/32,c=c/24,d=d/8],X4);
Y4 := {a*3 + b*12 + c*12 + d*23 + e*72 <= 480, a*1 + b*4 + c*4 + d*4 + e*35 <= 160, a*1 + b*4 + c*4 + d*1 + e*41 <= 160, a*0 + b*0 + c*1 + d*0 + e*12 <= 24, a*3 + b*12 + c*19 + d*36 + e*117 <= 648, a*0 + b*0 + c*2 + d*3 + e*12 <= 48, a*3 + b*12 + c*17 + d*33 + e*102 <= 600, a*0 + b*3 + c*2 + d*5 + e*12 <= 96, a*12 + b*57 + c*48 + d*95 + e*288 <= 2064, a*4 + b*19 + c*16 + d*19 + e*134 <= 688, a*4 + b*19 + c*16 + d*4 + e*164 <= 688, a*0 + b*3 + c*4 + d*9 + e*24 <= 144, a*0 + b*3 + c*2 + d*3 + e*18 <= 96, a*0 + b*3 + c*2 + d*0 + e*24 <= 96, a*3 + b*4 + c*4 + d*7 + e*24 <= 168, a*1 + b*1 + c*1 + d*1 + e*8 <= 43, a*2 + b*2 + c*2 + d*3 + e*13 <= 86, a*3 + b*2 + c*4 + d*6 + e*27 <= 138, a*6 + b*2 + c*9 + d*12 + e*60 <= 270, a*6 + b*6 + c*7 + d*12 + e*42 <= 282, a*20 + b*14 + c*15 + d*18 + e*106 <= 650, a*9 + b*6 + c*8 + d*12 + e*51 <= 318, a*27 + b*18 + c*20 + d*24 + e*141 <= 858, a*34 + b*16 + c*19 + d*15 + e*110 <= 832, a*7 + b*2 + c*4 + d*4 + e*20 <= 154, a*6 + b*0 + c*4 + d*3 + e*15 <= 120, a*18 + b*6 + c*11 + d*12 + e*60 <= 426, a*18 + b*6 + c*10 + d*9 + e*57 <= 402, a*11 + b*4 + c*6 + d*5 + e*35 <= 248, a*9 + b*3 + c*5 + d*3 + e*30 <= 201, a*3 + b*0 + c*2 + d*0 + e*12 <= 60, a*16 + b*6 + c*9 + d*8 + e*54 <= 370, a*0 + b*0 + c*0 + d*0 + e*1 <= 1, a*0 + b*0 + c*0 + d*1 + e*4 <= 8, a*0 + b*1 + c*1 + d*3 + e*8 <= 44, a*1 + b*2 + c*1 + d*3 + e*16 <= 72, a*3 + b*8 + c*5 + d*15 + e*40 <= 280, a*1 + b*2 + c*1 + d*9 + e*26 <= 106, a*7 + b*14 + c*7 + d*29 + e*80 <= 504, a*0 + b*2 + c*1 + d*2 + e*16 <= 64, a*0 + b*1 + c*0 + d*0 + e*16 <= 32, a*0 + b*1 + c*0 + d*6 + e*16 <= 56, a*0 + b*7 + c*0 + d*18 + e*40 <= 224, a*0 + b*5 + c*3 + d*9 + e*20 <= 160, a*10 + b*15 + c*14 + d*25 + e*84 <= 602, a*1 + b*1 + c*1 + d*3 + e*9 <= 50, a*9 + b*6 + c*8 + d*18 + e*57 <= 342, a*9 + b*6 + c*7 + d*18 + e*57 <= 330, a*1 + b*0 + c*1 + d*3 + e*13 <= 42, a*9 + b*3 + c*10 + d*18 + e*69 <= 342, a*5 + b*2 + c*3 + d*10 + e*37 <= 162, a*3 + b*1 + c*2 + d*6 + e*23 <= 98, a*2 + b*2 + c*1 + d*3 + e*19 <= 80, a*3 + b*3 + c*2 + d*6 + e*18 <= 120, a*2 + b*2 + c*1 + d*9 + e*27 <= 112, a*14 + b*14 + c*7 + d*31 + e*93 <= 560, a*6 + b*9 + c*7 + d*15 + e*42 <= 336, a*1 + b*1 + c*1 + d*2 + e*6 <= 44, a*2 + b*2 + c*1 + d*2 + e*22 <= 80, a*6 + b*6 + c*5 + d*6 + e*42 <= 240, a*30 + b*21 + c*19 + d*27 + e*138 <= 912, a*3 + b*2 + c*2 + d*4 + e*13 <= 94, a*15 + b*10 + c*8 + d*19 + e*62 <= 440, a*6 + b*4 + c*3 + d*7 + e*29 <= 176, a*21 + b*14 + c*12 + d*25 + e*82 <= 616, a*81 + b*54 + c*49 + d*72 + e*357 <= 2376, a*18 + b*12 + c*9 + d*16 + e*102 <= 528, a*3 + b*3 + c*1 + d*15 + e*44 <= 174, a*6 + b*6 + c*1 + d*36 + e*107 <= 384, a*21 + b*21 + c*7 + d*51 + e*146 <= 840, a*1 + b*1 + c*0 + d*6 + e*19 <= 64, a*1 + b*1 + c*0 + d*3 + e*10 <= 43, a*42 + b*42 + c*7 + d*108 + e*317 <= 1680, a*7 + b*7 + c*1 + d*18 + e*54 <= 280, a*2 + b*1 + c*1 + d*1 + e*6 <= 48, a*9 + b*3 + c*4 + d*9 + e*24 <= 198, a*2 + b*1 + c*1 + d*3 + e*9 <= 56, a*3 + b*2 + c*1 + d*9 + e*27 <= 118, a*30 + b*12 + c*11 + d*39 + e*117 <= 720, a*15 + b*6 + c*5 + d*21 + e*63 <= 366, a*3 + b*1 + c*1 + d*3 + e*8 <= 62, a*6 + b*5 + c*1 + d*30 + e*90 <= 328, a*6 + b*2 + c*1 + d*12 + e*36 <= 160, a*9 + b*3 + c*2 + d*15 + e*45 <= 222, a*12 + b*3 + c*2 + d*18 + e*51 <= 264, a*3 + b*1 + c*1 + d*2 + e*5 <= 56, a*4 + b*1 + c*2 + d*2 + e*9 <= 80, a*2 + b*0 + c*1 + d*1 + e*3 <= 34, a*16 + b*3 + c*6 + d*8 + e*21 <= 272, a*12 + b*6 + c*5 + d*15 + e*45 <= 306, a*39 + b*24 + c*17 + d*51 + e*153 <= 1080, a*3 + b*2 + c*1 + d*5 + e*15 <= 90, a*17 + b*12 + c*6 + d*28 + e*84 <= 520, a*15 + b*9 + c*7 + d*18 + e*57 <= 408, a*9 + b*4 + c*3 + d*9 + e*23 <= 200, a*33 + b*24 + c*11 + d*57 + e*169 <= 1032, a*21 + b*14 + c*7 + d*33 + e*97 <= 616, a*19 + b*6 + c*10 + d*9 + e*55 <= 408, a*15 + b*5 + c*8 + d*5 + e*47 <= 328, a*8 + b*2 + c*4 + d*3 + e*21 <= 160, a*4 + b*1 + c*2 + d*1 + e*11 <= 80, a*6 + b*5 + c*1 + d*14 + e*42 <= 216, a*66 + b*63 + c*11 + d*162 + e*478 <= 2544, a*8 + b*3 + c*4 + d*4 + e*24 <= 176, a*7 + b*3 + c*3 + d*4 + e*19 <= 152, a*6 + b*2 + c*3 + d*3 + e*17 <= 128, a*48 + b*18 + c*17 + d*24 + e*132 <= 960, a*8 + b*3 + c*3 + d*4 + e*20 <= 160, a*6 + b*2 + c*2 + d*3 + e*13 <= 112, a*9 + b*3 + c*2 + d*12 + e*36 <= 201, a*6 + b*2 + c*1 + d*8 + e*24 <= 132, a*12 + b*3 + c*2 + d*12 + e*33 <= 222, a*6 + b*2 + c*1 + d*6 + e*16 <= 118, a*18 + b*7 + c*3 + d*18 + e*46 <= 368, a*5 + b*2 + c*1 + d*5 + e*13 <= 104, a*3 + b*1 + c*1 + d*1 + e*7 <= 56, a*33 + b*12 + c*11 + d*15 + e*93 <= 648, a*6 + b*3 + c*2 + d*3 + e*30 <= 144, a*21 + b*3 + c*2 + d*18 + e*51 <= 336, a*1 + b*0 + c*0 + d*1 + e*4 <= 16, a*14 + b*3 + c*3 + d*9 + e*24 <= 226, a*56 + b*11 + c*12 + d*36 + e*97 <= 896, a*46 + b*9 + c*6 + d*36 + e*99 <= 746, a*56 + b*9 + c*6 + d*46 + e*129 <= 896, a*9 + b*0 + c*4 + d*4 + e*12 <= 144, a*18 + b*3 + c*6 + d*8 + e*21 <= 288, a*4 + b*1 + c*1 + d*2 + e*5 <= 64, a*1 + b*0 + c*0 + d*0 + e*8 <= 16, a*24 + b*5 + c*5 + d*15 + e*42 <= 384, a*16 + b*3 + c*2 + d*12 + e*35 <= 256, a*9 + b*0 + c*4 + d*0 + e*24 <= 144, a*12 + b*2 + c*4 + d*3 + e*21 <= 192, a*8 + b*2 + c*2 + d*3 + e*13 <= 128, a*21 + b*4 + c*2 + d*16 + e*48 <= 336, a*84 + b*16 + c*9 + d*64 + e*186 <= 1344, a*6 + b*1 + c*2 + d*1 + e*11 <= 96, a*4 + b*1 + c*1 + d*1 + e*7 <= 64, a*48 + b*12 + c*11 + d*15 + e*93 <= 768, a*26 + b*6 + c*3 + d*18 + e*48 <= 418, a*28 + b*7 + c*3 + d*18 + e*46 <= 448, a*28 + b*6 + c*3 + d*20 + e*56 <= 448, a*8 + b*2 + c*1 + d*5 + e*13 <= 128, a*8 + b*2 + c*1 + d*2 + e*22 <= 128, a*12 + b*3 + c*2 + d*3 + e*30 <= 192, a*4 + b*1 + c*0 + d*0 + e*16 <= 64};

These are the inequalities from the 4D brute force search

LPSolve(a+b+c+d+e,Y4,assume=nonnegint,depthlimit=100,maximize);
[43, [a = 5, b = 20, c = 18, d = 0, e = 0]]

Gives the correct answer, as it should

LPSolve(a+b+c+d+e,{op(Y4),e=1},assume=nonnegint,depthlimit=100,maximize);
[36, [a = 5, b = 15, c = 12, d = 3, e = 1]]

Again correct

LPSolve(c,{op(Y4),a+b+c+d+e=43},assume=nonnegint,depthlimit=100);
[18, [a = 5, b = 20, c = 18, d = 0, e = 0]]

This shows that 43-point sets have c at least 18.

LPSolve(c,{op(Y4),a+b+c+d+e>=42},assume=nonnegint,depthlimit=100);
[12, [a = 6, b = 24, c = 12, d = 0, e = 0]]

This shows that 42+ point sets have c at least 12

LPSolve(d,{op(Y4),a+b+c+d+e >= 41},assume=nonnegint,depthlimit=100,maximize);
[3, [a = 6, b = 15, c = 17, d = 3, e = 0]]

This shows that 41+ point Moser sets have d at most 3.

LPSolve(d,{op(Y4),a+b+c+d+e >= 40},assume=nonnegint,depthlimit=100,maximize);
[4, [a = 6, b = 15, c = 15, d = 4, e = 0]]

This shows that 40+ point Moser sets have d at most 4.

X4 := subs([a=16*a,b=32*b,c=24*c,d=8*d],Y4);

convert back to densities rather than counts

X5 := {op(X4), op(subs([a=b,b=c,c=d,d=e,e=f],X4)), 2*a+f <= 2};

xyzw1, xyzw2, and xxxx cube inequalities

X5 := {op(X5), 4*a+b+2*c+2*d+e+f <= 11/2, 2*e+f <= 2, 4*a+4*c+2*d+e+f <= 6, 4*a+2*b+2*c+2*d+e+f <= 6, 7*a+b+2*c+2*d+e+f <= 7, 4*a+2*e+f <= 4, 8*a+4*c+2*d+e+f <= 8, 8*a+2*b+2*c+2*d+e+f <= 8, 4*a+2*b+2*d+2*e+f <= 6, 8*a+2*b+2*d+2*e+f <= 8};

These inequalities come from xxyyz cubes, see Peake.989

X5 := {op(X5),8*a+4*b+2*c+2*d+4*e+2*f <=11,4*a+2*b+1*c+2*d+2*e+1*f <= 6,0*a+0*b+2*c+0*d+0*e+1*f <= 2,4*a+4*b+1*c+0*d+2*e+1*f <= 6,7*a+2*b+1*c+1*d+2*e+1*f <= 7,8*a+2*b+1*c+2*d+2*e+1*f <= 8,4*a+0*b+2*c+0*d+0*e+1*f <= 4,4*a+0*b+2*c+2*d+2*e+1*f <= 6,8*a+0*b+2*c+2*d+2*e+1*f <= 8,8*a+4*b+1*c+0*d+2*e+1*f <= 8};

These inequalities come from xxxyz cubes, see Peake.991

Y5 := subs([a=a/32,b=b/80,c=c/80,d=d/40,e=e/10],X5);
LPSolve(a+b+c+d+e+f,Y5,assume=nonnegint,depthlimit=100,maximize);
[125, [a = 8, b = 39, c = 78, d = 0, e = 0, f = 0]]

Off by one! The truth is [math]\displaystyle{ c'_5=124 }[/math].

LPSolve(a+b+c+d+e+f,{op(Y5),f=1},assume=nonnegint,depthlimit=100,maximize);
[110, [a = 14, b = 35, c = 40, d = 20, e = 0, f = 1]]

This, together with the bound [math]\displaystyle{ c'_5=124 }[/math], implies that [math]\displaystyle{ a+b+c+d+e+f+14f \leq 124 }[/math].

Y5 := {op(Y5), a+b+c+d+e+f+14*f <= 124};
LPSolve(a+b+c+d+e+f,{op(Y5),e>=1},assume=nonnegint,depthlimit=100,maximize);
[123, [a = 8, b = 40, c = 72, d = 2, e = 1, f = 0]]

This gives an alternate proof of e=0 for 125-point Moser sets

X5 := subs([a=a*32,b=b*80,c=c*80,d=d*40,e=e*10],Y5);
X6 := {op(X5), op(subs([a=b,b=c,c=d,d=e,e=f,f=g],X5)), op(subs([b=d,c=g],X2)), op(subs([b=c,c=e,d=g],X3))};

xyzwu1, xyzwu2, xxxyyy, xxyyzz cube inequalities

X6 := {op(X6),8*a+4*b+2*c+2*e+4*f+2*g <= 11,0*a+0*b+2*c+0*e+0*f+1*g <= 2,4*a+2*b+1*c+2*e+2*f+1*g <= 6,7*a+2*b+1*c+1*e+2*f+1*g <= 7,4*a+0*b+2*c+0*e+0*f+1*g <= 4,4*a+0*b+2*c+2*e+2*f+1*g <= 6,8*a+0*b+2*c+2*e+2*f+1*g <= 8,8*a+2*b+1*c+2*e+2*f+1*g <= 8,4*a+4*b+1*c+0*e+2*f+1*g <= 6,8*a+4*b+1*c+0*e+2*f+1*g <= 8};

These come from xxxxyz cubes, see Peake.991

X6 := {op(X6),4*a+2*b+0*c+3*d+1*e+1*f+1*g <= 6,4*a+0*b+2*c+3*d+1*e+1*f+1*g <= 6,8*a+2*b+0*c+3*d+1*e+1*f+1*g <= 8,8*a+0*b+2*c+3*d+1*e+1*f+1*g <= 8,0*a+4*b+0*c+0*d+2*e+0*f+1*g <= 4,0*a+0*b+4*c+0*d+0*e+2*f+1*g <= 4,8*a+4*b+0*c+0*d+2*e+0*f+1*g <= 8,8*a+0*b+4*c+0*d+0*e+2*f+1*g <= 8};

These come from xxxyyz cubes, see Peake.991, Peake.993

Y6 := subs([a=a/64,b=b/192,c=c/240,d=d/160,e=e/60,f=f/12],X6);
LPSolve(a+b+c+d+e+f+g,Y6,assume=nonnegint,depthlimit=500,maximize);
[356, [a = 24, b = 72, c = 180, d = 80, e = 0, f = 0, g = 0]]
LPSolve(a+b+c+d+e+f+g,{op(Y6),g=1},assume=nonnegint,depthlimit=100,maximize);
[337, [a = 26, b = 89, c = 120, d = 80, e = 20, f = 1, g = 1]]

This, together with the bound [math]\displaystyle{ c'_6=353 }[/math], implies that [math]\displaystyle{ a+b+c+d+e+f+g+16g \leq 353 }[/math]. Also shows that g=0 for 338+ point solutions.

LPSolve(a+b+c+d+e+f+g,{op(Y6),f>=1},assume=nonnegint,depthlimit=500,maximize);
[353, [a = 24, b = 77, c = 179, d = 72, e = 0, f = 1, g = 0]]

This shows that f=0 for 354+ point solutions.

LPSolve(e,{op(Y6),a+b+c+d+e+f+g>=354},assume=nonnegint,depthlimit=500,maximize);
[5, [a = 23, b = 76, c = 170, d = 80, e = 5, f = 0, g = 0]]

This shows that there are at most 5 "e" points for 354+ point solutions.

LPSolve(e,{op(Y6),a+b+c+d+e+f+g>=355},assume=nonnegint,depthlimit=500,maximize);
[2, [a = 24, b = 73, c = 178, d = 78, e = 2, f = 0, g = 0]]

Only 2 "e" points allowed for 355+ point solutions.

LPSolve(e,{op(Y6),a+b+c+d+e+f+g>=356},assume=nonnegint,depthlimit=500,maximize);
[0, [a = 24, b = 72, c = 180, d = 80, e = 0, f = 0, g = 0]]

No "e" points for 356-point solutions.

LPSolve(a,{op(Y6),a+b+c+d+e+f+g>=356},assume=nonnegint,depthlimit=500,maximize);
[24, [a = 24, b = 72, c = 180, d = 80, e = 0, f = 0, g = 0]]
LPSolve(b,{op(Y6),a+b+c+d+e+f+g>=356},assume=nonnegint,depthlimit=500,maximize);
[72, [a = 24, b = 72, c = 180, d = 80, e = 0, f = 0, g = 0]]
LPSolve(c,{op(Y6),a+b+c+d+e+f+g>=356},assume=nonnegint,depthlimit=500);
[180, [a = 24, b = 72, c = 180, d = 80, e = 0, f = 0, g = 0]]
LPSolve(d,{op(Y6),a+b+c+d+e+f+g>=356},assume=nonnegint,depthlimit=500);
[80, [a = 24, b = 72, c = 180, d = 80, e = 0, f = 0, g = 0]]

This shows that the only 356-point statistic is (24,72,180,80,0,0,0).

X6 := {op(X6), A6+16*g <= 353};
X7 := {op(X6), op(subs([a=b,b=c,c=d,d=e,e=f,f=g,g=h],X6)), 2*a+h <= 2};

xyzwuv1, xyzwuv2, xxxxxxx inequalities

Y7 := subs([a=a/128,b=b/448,c=c/672,d=d/560,e=e/280,f=f/84,g=g/14],X7);
LPSolve(a+b+c+d+e+f+g+h,Y7,assume=nonnegint,depthlimit=500,maximize);
[1041, [a = 46, b = 168, c = 336, d = 417, e = 72, f = 0, g = 2, h = 0]]
LPSolve(a+b+c+d+e+f+g+h,{op(Y7),h=1},assume=nonnegint,depthlimit=100,maximize);
[1007, [a = 55, b = 179, c = 336, d = 280, e = 139, f = 14, g = 3, h = 1]]