Reinventing Discovery

I’m very excited to say that my new book, “Reinventing Discovery: The New Era of Networked Science”, has just been released!

The book is about networked science: the use of online tools to transform the way science is done. In the book I make the case that networked science has the potential to dramatically speed up the rate of scientific discovery, not just in one field, but across all of science. Furthermore, it won’t just speed up discovery, but will actually amplify our collective intelligence, expanding the range of scientific problems which can be attacked at all.

But, as I explain in the book, there are cultural obstacles that are blocking networked science from achieving its full potential. And so the book is also a manifesto, arguing that networked science must be open science if it is to realize its potential.

Making the change to open science is a big challenge. In my opinion it’s one of the biggest challenges our society faces, one that requires action on many fronts. One of those fronts is to make sure that everyone — including scientists, but also grant agencies, governments, libraries, and, especially, the general public -– understands how important the stakes are, and how urgent is the need for change. And so my big hope for this book is that it will help raise the profile of open science. I want open science to become a part of our general culture, a subject every educated layperson is familiar with, and has an opinion about. If we can cause that to happen, then I believe that a big and positive shift in the culture of science is inevitable. And that will benefit everyone.

The book is shipping in hardcover from Amazon.com, and should ship through other booksellers by October 21. Note that the Kindle edition isn’t out as I write, but should arrive by October 21. A few relevant links:

Two caveats. First, I’m occasionally asked if the book is being released under a Creative Commons license. I discussed this option at length with my publisher, who ultimately declined. A couple of people have said to me that they find this ironic. This isn’t so, since the book argues as a broad principle that publicly funded science should be open science; the book is neither publicly funded nor, strictly speaking, science. However, as a personal preference I’d still like to see it enter the commons sooner rather than later. After the paperback has been out for a while, I will approach my publisher again to see what can be done.

Second, the book is not meant to be a reference work on open science. Instead, I’ve highlighted a small set of focused examples, inevitably leaving many great open science projects out. I hope the people running those other projects can forgive me. My aim wasn’t to write a reference work, but rather to write the kind of book that people will enjoy reading, and which enthusiasts of open science can give to their friends and family to help explain what open science is all about, and why it matters so very much.

Let me conclude by quoting one of my favorite lines from Tolkien: “The praise of the praiseworthy is above all reward”. And so it gives me great delight to finish with quotes from a few of the endorsements and reviews the book has received:

Science has always been a contact sport; the interaction of many minds is the engine of the discipline. Michael Nielsen has given us an unparalleled account of how new tools for collaboration are transforming scientific practice. Reinventing Discovery doesn’t just help us understand how the sciences are changing, it shows us how we can participate in the change. – Clay Shirky

This is the book on how networks will drive a revolution in scientific discovery; definitely recommended. – Tyler Cowen

Anyone who has followed science in recent years has noticed something odd: science is less and less about a solitary scientist working alone in a lab. Scientists are working in networks, and those networks are gaining scope, speed, and power through the internet. Nonscientists have been getting in on the act, too, folding proteins and identifying galaxies. Michael Nielsen has been watching these developments too, but he’s done much more: he’s provided the best synthesis I’ve seen of this new kind of science, and he’s also thought deeply about what it means for the future of how we understand the world. Reinventing Discovery is a delightfully written, thought-provoking book. – Carl Zimmer

Reinventing Discovery will frame serious discussion and inspire wild, disruptive ideas for the next decade. – Chris Lintott in Nature

Nielsen has created perhaps the most compelling and comprehensive case so far for a new approach to science in the Internet age. – Timo Hannay in Nature Physics

Georgia Tech, Duke University, and University of North Carolina

I’ll be speaking about open science at events at Georgia Tech, Duke University, and the University of North Carolina over the next few days. Here’s my current schedule of public and semi-public events:

  • Events on Monday, October 3, at 11:30am and 3:00pm at Georgia Tech: details of both events.
  • Event on Tuesday, October 4, at 4pm at Duke University: details.
  • I will be at the University of North Carolina on Wednesday, October 5. I am not currently doing any public events, but let me know if you’d like to meet, and it’s possible something can be arranged.

Berlin, New York, Boston

I’ll be speaking about open science at events in Berlin, New York and Boston over the next week. Here’s my current schedule of public and semi-public events:

  • Berlin, Friday 16 September, 5pm, event at the Freie Universität of Berlin: more details
  • New York, Courant Institute Colloquium, NYU, Monday 19 September, 3:45pm.
  • New York, event organized by the Coles Science Center and the NYU Libraries Information Futures Group, Monday 19 September, 6:30pm: more details
  • Boston, Harvard, Colloquium at the Institute for Theory and Computation in the Center for Astrophysics, Thursday 22 September: more details.
  • Boston, MIT Physics Colloquium (MIT only), Thursday 22 September: more details

Visiting Europe

I’ll be in Europe for the next couple of weeks, and will be giving several talks about open science. Here’s a rough schedule of where I’ll be and when:

Please come and say hello if you’re at one of the events!

I’m interested in adding more events to my schedule, so if you’re interested in having me speak, or would like to arrange for me to attend some sort of meetup (perhaps with a group), please let me know (mn@michaelnielsen.org).

I’ll add more details over the next couple of days, as details become available.

Public talk about open science in San Francisco

I’m pleased to say that I’ll be giving a public talk about open science in San Francisco, next Wednesday, June 29, at 6pm. The talk is being hosted by the Public Library of Science, and there will be wine, beer and cheese after the event.

The talk is entitled “Why the net doesn’t work for science – and how to fix it” [*]. Here’s my abstract for the talk:

The net is transforming many aspects of our society, from finance to friendship. And yet scientists, who helped create the net, are extremely conservative in how they use it. Although the net has great potential to transform science, most scientists remain stuck in a centuries-old system for the construction of knowledge. I will describe some leading-edge projects that show how online tools can radically change and improve science (using projects in Mathematics and Citizen Science as examples), and will then go on to discuss why these tools haven’t spread to all corners of science, and how we can change that.

The talk will be thematically similar to my recent talk about open science for TEDxWaterloo, but will go much deeper into the challenge and promise of open science.

For more details on the talk, including the address and a map, please see the PLoS blog. Please RSVP to rshah@plos.org if you plan to attend.

Hope to see you there!

[*] The title is a riff on the wonderful phrase “making the web work for science”, which I believe originated with James Boyle. For a recent talk on the subject by Boyle, see here (see also Creative Commons’ work on science).

Data-driven intelligence

I’ve started a new blog, on data-driven intelligence. In future, this is where technical posts like my Google Technology Stack posts will go. There are two posts up:

  • A post describing Pregel, Google’s system for implementing graph-based algorithms on large clusters of machines. In addition to describing how Pregel works, I give a toy single-machine Python implementation which can be used to play with Pregel. The code is up on GitHub.
  • Sex, Einstein, and Lady Gaga: what’s discussed on the most popular blogs. I crawled 50,000 pages from Technorati’s list of the top 1,000 blogs, and determined the percentage of pages containing words such as “sex”, “Einstein”, “Gaga”, and many others. The results were entertaining.

The blog, of course, has an RSS feed.

Quantum computing for the determined

I’ve posted to YouTube a series of 22 short videos giving an introduction to quantum computing. Here’s the first video:

Below I list the remaining 21 videos, which cover subjects including the basic model of quantum computing, entanglement, superdense coding, and quantum teleportation.

To work through the videos you need to be comfortable with basic linear algebra, and with assimilating new mathematical terminology. If you’re not, working through the videos will be arduous at best! Apart from that background, the main prerequisite is determination, and the willingness to work more than once over material you don’t fully understand.

In particular, you don’t need a background in quantum mechanics to follow the videos.

The videos are short, from 5-15 minutes, and each video focuses on explaining one main concept from quantum mechanics or quantum computing. In taking this approach I was inspired by the excellent Khan Academy.

The course is not complete — I originally planned about 8 more videos. The extra videos would complete my summary of basic quantum mechanics (+2 videos), and cover reversible computing (+2 videos), and Grover’s quantum search algorithm (+4 videos). Unfortunately, work responsibilities that couldn’t be put aside meant I had to put the remaining videos on hold. If lots of people work through the existing videos and are keen for more, then I’ll find time to finish them off. As it is, I hope the incomplete series is still useful.

One minor gotcha: originally, I was hoping to integrate the videos with a set of exercises. Again, time prevented me from doing this: there are no exercises. But as a remnant of this plan, in at least one video (video 7, the video on unitary matrices preserving length, and possibly elsewhere) I leave something “to the exercises”. Hopefully it’s pretty clear what needs to be filled in at this point, and viewers can supply the missing details.

Let me finish with two comments on approach. First, the videos treat quantum bits — qubits — as abstract mathematical entities, in a way similar to how we can think of conventional (classical) bits as 0 or 1, not as voltages in a circuit, or magnetic domains on a hard disk. I don’t get into the details of physical implementation at all. This approach bugs some people a lot, and others not at all. If you think it’ll bug you, these videos aren’t for you.

Second, the videos focus on the nuts-and-bolts of how things work. If you want a high-level overview of quantum computing, why it’s interesting, and what quantum computers may be capable of, there are many available online, a Google search away. Here’s a nice one, from Scott Aaronson. You may also enjoy David Deutsch’s original paper about quantum computing. It’s a bit harder to read than an article in Wired or Scientific American, but it’s worth the effort, for the paper gives a lot of insight into some of the fundamental reasons for thinking about quantum computing in the first place. Such higher-level articles may be helpful to read in conjunction with the videos.

Here’s the full list of videos, including the first one above. Note that because this really does get into the nuts and bolts of how things work, it also builds cumulatively. You can’t just skip straight to the quantum teleportation video and hope to understand it, you’ll need to work through the earlier videos, unless you already understand their content.

The basics

Superdense coding

Quantum teleportation

The postulates of quantum mechanics (TBC)

Thanks to Jen Dodd, Ilya Grigorik and Hassan Masum for feedback on the videos, and for many enjoyable discussions about open education.

If you enjoyed these videos, you may be interested in my forthcoming book, Reinventing Discovery, where I describe how online tools and open science are transforming the way scientific discoveries are made.

Survey notes on fermi algebras and the Jordan-Wigner transform now on GitHub

Continuing the theme of my last post, I’ve now put my old survey notes on fermi algebras and the Jordan-Wigner transform up on GitHub.

The Jordan-Wigner transform is an amazing tool. It let’s you move back and forth between two seemingly very different ways of describing a physical system, either as a collection of qubits, or as a collection of fermions. To give you an idea of the power of the Jordan-Wigner transform, in his famous 1982 paper on quantum computing, Richard Feynman wrote the following:

could we [use a quantum computer to] imitate every quantum mechanical system which is discrete and has a finite number of degrees of freedom? I know, almost certainly, that we could do that for any quantum mechanical system which involves Bose particles. I’m not sure whether Fermi particles could be described by such a system. So I leave that open.

As shown in the notes, once you understand the Jordan-Wigner transform, the answer to Feynman’s question is obvious: yes, we can use quantum computers to simulate systems of fermions. The reason is that the Jordan-Wigner transforms lets us view the fermi system as a system of qubits which is easy to simulate using standard simulation techniques. Obviously, the point here isn’t that Feynman was silly: it’s that tools like the Jordan-Wigner transform can make formerly hard things very simple.

The notes assume familiarity with elementary quantum mechanics, comfort with elementary linear algebr, and a little familiarity with the basic nomenclature of quantum information science (qubits, the Pauli matrices).

I’m releasing the notes under a Creative Commons Attribution license (CC BY 3.0). That means anyone can copy, distribute, transmit and adapt/remix the work, provided my contribution is attributed. The notes could be used, for example, to help flesh out Wikipedia’s article about the Jordan-Wigner transform. Or perhaps they could usefully be adapted into course notes, or part of a review article.

Notes on expander graphs now on GitHub

Several years ago I wrote a set of introductory notes (pdf) about expander graphs, an exceptionally useful concept from computer science. I’m not an expert on expanders, but the notes were more popular than I anticipated, and still get a surprising amount of traffic. As an experiment, I’ve put the LaTeX source for the notes up on GitHub, under a Creative Commons Attribution license. That makes it trivial for anyone interested to fork, remix and adapt the notes. I don’t imagine a sudden outbreak of expander graph remixes, but maybe they’ll be useful to someone.